Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

This document will provide a detailed description of:

How to convert the YOLOV8 ONNX model into a model for use on the C3V platform

Write sample code for object detection based on YOLOV8

Execute object detection program and obtain recognition results in the C3V Linux environment

Table of Contents
stylenone

The tool versions involved in the current document are as follows:

NPU Kernel Driver

v6.4.15.9

Acuity Toolkit

6.21.1

ViviantelIDE

5.8.2

1. Model Conversation

Before the conversion, it is necessary to first set up the environment for model conversion. Please refer to the following document to prepare the environment:NN Model Conversion

1.1. Project Preparation

  1. Create Model folder

Create a folder yolov8s in path ~/c3v/Models. Please ensure the folder name is the same as the ONNX file name.

Code Block
~/c3v/Models$ mkdir yolov8s && cd yolov8s
  1. Copy the ONNX file and input.jpg which resolution is 640x640 to the folder yolov8s. These two files will be used as input files during model conversion.

Code Block
~/c3v/Models$ cp yolov8s.onnx yolov8s/
~/c3v/Models$ cp input.jpg yolov8s/
  1. Create a dataset.txt file, the content of dataset.txt is the input.jpg file name.

Code Block
./input.jpg
  1. Create inputs_outputs.txt file and get the information from yolov8s.onnx via netron tool/webpage. Here is the onnx file:

    View file
    nameyolov8s_onnx.zip
    .

image-20240802-074429.png

Select the three operators within the red box as the output. write --input-size-list and --outputs informations to inputs_outputs.txt:

Code Block
--outputs '/model.22/Sigmoid_output_0 /model.22/Mul_2_output_0'

After completing the above steps, there will be the following files under the yolov8s path:

image-20240802-074511.png

1.2. Implementing

Using shell script tools to convert the model from ONNX to the NB file. There are 4 steps: import quantize inference and export. Tools are in ~/c3v/Models:

  • pegasus_import.sh

  • pegasus_quantize.sh

  • pegasus_inference.sh

  • pegasus_export_ovx.sh

Import

Execute the command in the console or terminal, and wait for it to complete. It will import and translate an NN model to NN formats.

Code Block
./pegasus_import.sh yolov8s

Wait until the tool execution is complete and check there are no errors like this:

image-20240802-074601.png

Then we will see the following four files added under the folder ~/c3v/Models/yolov8s.

image-20240802-074632.png

Quantize

Modify the scale value(1/255=0.003921569) of the yolov8s_inputmeta.yml file, which is in ~/c3v/Models/yolov8s.

image-20240802-074702.png

Select one quantized type for your need, such as uint8 / int16 / bf16 / pcq. In this sample we use uint8.

Code Block
./pegasus_quantize.sh yolov8s uint8

Wait until the tool execution is complete and check there are no errors like this:

image-20240802-074757.png

Then we will see the following four files added under the folder ~/c3v/Models/yolov8s.

image-20240802-074826.png

Inference

Inference the NN model with the quantization data type.

Code Block
./pegasus_inference.sh yolov8s uint8

Wait until the tool execution is complete and check there are no errors like this:

image-20240802-080320.png

Export

Export the quantized application for device deployment. Please modify the pegasus_export_ovx.sh for the nb file generating, and add both 3 lines marked in the red box.

image-20240802-080337.png
Code Block
./pegasus_export_ovx.sh yolov8s uint8

Wait until the tool execution is complete and check there are no errors like this:

image-20240802-080358.png

In the path ~/c3v/Models/yolov8s/wksp, you will find a folder named yolov8s_uint8_nbg_unify.

image-20240802-080428.png

We can get the nb file and a c file for NN graph setup information.

image-20240802-080446.png

2. Object Detection Program

2.1. Post Processing

The post-processing of the example code automatically transferred out by the tool will print the top 5. We need to increase the parsing of the results to obtain complete results of target recognition. The relevant post-processing functions are located in the file vnn_post_process.c.

We provide an example function for post-processing, which can complete the parsing of NN processing results:

  • post_proc_init

  • post_proc_process

  • post_proc_deinit

The function needs to be modified:vnn_PostProcessYolov8Uint8

Code Block
languagecpp
vsi_status vnn_PostProcessYolov8sUint8(vsi_nn_graph_t *graph)
{
    vsi_status status = VSI_FAILURE;

#if DETECT_RESULT_IMPL
    /*detect result sample implement*/
    post_proc_init(graph);
    post_proc_process(graph);
    post_proc_deinit();

#else
    /* Show the top5 result */
    status = show_top5(graph, vsi_nn_GetTensor(graph, graph->output.tensors[0]));
    TEST_CHECK_STATUS(status, final);

    /* Save all output tensor data to txt file */
    save_output_data(graph);

final:
#endif

    return VSI_SUCCESS;
}

For detailed function implementation, please refer to the following file:

View file
namevnn_post_process.zip

2.2. Program Compile

When compiling NN-related applications, SDK's headers and libraries must be included.

  • Example of SDK Includes Path:

Code Block
INCLUDES+=-I$(NN_SDK_DIR)/include/ \
-I$(NN_SDK_DIR)/include/CL \
-I$(NN_SDK_DIR)/include/VX \
-I$(NN_SDK_DIR)/include/ovxlib \
-I$(NN_SDK_DIR)/include/jpeg

Example of SDK Link Libraries:

Code Block
LIBS+=-lOpenVX -lOpenVXU -lCLC -lVSC -lGAL -ljpeg -lovxlib

This is an example Makefile that just needs to be placed in ~/c3v/Models/yolov8s/wksp/yolov8s_uint8_nbg_unify Folder. And set the relevant VIVIANTE_ SDK_ DIR and TOOLCHAIN can complete the compilation of the app:

Code Block
BIN=yolov8s_sample 

NN_SDK_DIR=Path to NN SDK directory
TOOLCHAIN=Path to toolchain directory

NN_SDK_INC=$(NN_SDK_DIR)/include
NN_SDK_LIB=$(NN_SDK_DIR)/lib

# 1.cross compile
#CROSS_COMPILE=$(TOOLCHAIN)/aarch64-none-linux-gnu-
#CC=$(CROSS_COMPILE)gcc
#CXX=$(CROSS_COMPILE)g++

# 2.build in c3v
#CC=gcc
#CXX=g++

CFLAGS=-Wall -O3

INCLUDE += -I$(NN_SDK_INC) -I$(NN_SDK_INC)/HAL -I$(NN_SDK_INC)/ovxlib -I$(NN_SDK_INC)/jpeg
LIBS += -L$(NN_SDK_LIB) -L./ -L$(STD_LOG_INC)
LIBS += -lOpenVX -lOpenVXU -lOpenVX -lCLC -lVSC -lGAL -ljpeg -lovxlib -lm
LIBS += -lNNArchPerf -lArchModelSw
LIBS += -lstdc++ -ldl -lpthread -lgcc_s

CFLAGS += $(INCLUDE) -fPIC

SRCS=${wildcard *.c}
SRCS+=${wildcard *.cpp}

OBJS=$(addsuffix .o, $(basename $(SRCS)))

.SUFFIXES: .hpp .cpp .c 

.cpp.o:
	$(CXX) $(CFLAGS) -std=c++11 -c $<

.c.o:
	$(CC) $(CFLAGS) -c $<

all: $(BIN)

$(BIN): $(OBJS)
	$(CC) $(CFLAGS) $(LFLAGS) $(OBJS) -o $@ $(LIBS) 
	rm -rf *.o

clean:
	rm -rf *.o
	rm -rf $(BIN) $(LIB)
	rm -rf *~

3. Running on the C3V Linux

Insmod to kernel

Code Block
insmod ./galcore.ko
[14358.019373] galcore f8140000.galcore: NPU get power success
[14358.019458] galcore f8140000.galcore: galcore irq number is 44
[14358.020542] galcore f8140000.galcore: NPU clock: 900000000
[14358.026015] Galcore version 6.4.15.9.700103

Copy the application and related libraries into C3V Linux and run:

Code Block
./yolov8s_sample ./network_binary.nb ./input.jpg

The result is like this:

Code Block
/mnt/yolov8s_uint8_nbg_unify # ./yolov8s_sample ./network_binary.nb
../input.jpg
Create Neural Network: 28ms or 28375us
Verify...
Verify Graph: 21ms or 21116us
Start run graph [1] times...
Run the 1 time: 57.55ms or 57548.24us
vxProcessGraph execution time:
Total   58.05ms or 58053.36us
Average 58.05ms or 58053.36us
obj: L: 0 P:0.93, [(0, 42) - (200, 599)]
obj: L: 0 P:0.91, [(309, 279) - (180, 361)]
obj: L: 0 P:0.58, [(344, 171) - (170, 301)]