Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

ArmNN SDK ENV variable set:

...

cd $BASEDIR/ComputeLibrary/build/examples

export LD_LIBRARY_PATH=$BASEDIR/ComputeLibrary/build:$LD_LIBRARY_PATH

./graph_mobilenet_v2

The application will create the DNN with random weights and run it with random inputs. If inference finishes, the "Test passed" message should be printed.

1.2 Running AlexNet using graph API
Download the archive file to the example location folder from this link:
cd $BASEDIR/ComputeLibrary/build/examples
curl -L -o computer_library_alexnet.zip

https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01_


Create a new sub-folder and unzip the file.
mkdir assets_alexnet
unzip compute_library_alexnet.zip -d assets_alexnet


Set environment variables for execution:
export LD_LIBRARY_PATH=$BASEDIR/ComputeLibrary/build/examples:$LD_LIBRARY_PATH
export PATH_ASSETS=$BASEDIR/ComputeLibrary/build/examples/assets_alexnet


Run the program.
./graph_alexnet --data=$PATH_ASSETS --image=$PATH_ASSETS/go_kart.ppm --labels=$PATH_ASSETS/labels.txt



grep "Caff"
-rwxr-xr-x 1 pi pi 915248 Sep 2 05:51 CaffeAlexNet-Armnn
-rwxr-xr-x 1 pi pi 725688 Sep 2 05:23 CaffeCifar10AcrossChannels-Armnn
-rwxr-xr-x 1 pi pi 915252 Sep 2 05:41 CaffeInception_BN-Armnn
-rwxr-xr-x 1 pi pi 729920 Sep 2 05:49 CaffeMnist-Armnn
-rwxr-xr-x 1 pi pi 915236 Sep 2 05:15 CaffeResNet-Armnn
-rwxr-xr-x 1 pi pi 915248 Sep 2 05:33 CaffeVGG-Armnn
-rwxr-xr-x 1 pi pi 920148 Sep 2 05:43 CaffeYolo-Armnn
Two important limitations might require preprocessing of the Caffe model file prior to running an Arm NN Caffe test.
First, Arm NN tests require batch size to be set to 1.
Second, Arm NN does not support all Caffe syntaxes, therefore some older neural network model files will require updates to the latest Caffe syntax.
For example, if a Caffe model has a batch size different from one or uses an older Caffe version defined by files model_name.prototxt and model_name.caffemodel, create a copy of the .prototxt file (new_model_name.prototxt), modify this file to use the new Caffe syntax and change the batch size to 1 and finally run the following python script:
import caffe
net = caffe.Net('model_name.prototxt', 'model_name.caffemodel', caffe.TEST)
new_net = caffe.Net('new_model_name.prototxt', 'model_name.caffemodel', caffe.TEST)
new_net.save('new_model_name.caffemodel')

      1. CaffeAlexNet-Armnn
  1. Use A linux host with py-caffe installed

    Download the model files:
    cd ~/ArmnnTests
    curl -L -o deploy.prototxt https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt
    curl -L -o bvlc_alexnet.caffemodel http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
    cp deploy.prototxt bvlc_alexnet_1.prototxt
    nano bvlc_alexnet_1.prototxt

...

2.2.2 CaffeInception_BN-Armnn

  1. Use A linux host with py-caffe installed
    Download the model files:
    cd ~/ArmnnTests
    curl -L -o deploy.prototxt https://raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt
    curl -L -o Inception21k.caffemodel http://www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel
    cp deploy.prototxt Inception-BN-batchsize1.prototxt
    nano Inception-BN-batchsize1.prototxt

...

2.1.3 CaffeMnist-Armnn

  1. Use A linux host with py-caffe installed
    Download the model files:
    cd ~/ArmnnTests
    curl -L -o lenet.prototxt https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
    curl -L -o lenet_iter_9000_ori.caffemodel https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
    cp lenet.prototxt lenet_iter_9000.prototxt
    nano lenet_iter_9000.prototxt
    change the batch size to 1

    Original content:

    name: "LeNet"


    layer {



    name: "data"


      type: "Input"


      top: "data"


      input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }

    Modified content:

    name: "LeNet"


    layer {



    name: "data"


      type: "Input"


      top: "data"


      input_param { shape: { dim: 1 dim: 1 dim: 28 dim: 28 } }


    Run the following python script to transform the network
        python3
            import caffe
            net = caffe.Net(lenet.prototxt', lenet_iter_9000_ori.caffemodel', caffe.TEST)
            new_net = caffe.Net(' lenet_iter_9000.prototxt', lenet_iter_9000_ori.caffemodel', caffe.TEST)
            new_net.save(' lenet_iter_9000.caffemodel')

    Copy lenet_iter_9000.caffemodel to ~/ArmnnTests/models in SP7021

  2. Find a .jpg file containing a shark (great white shark). Rename it to shark.jpg and copy it to the data folder on SP7021.
  3. Download the two archives below and unpack them:

...

2.2.1 TfInceptionV3-Armnn

1. Download the model files. Unzip and move file to action folder :
        cd ~/ArmnnTests
        curl -L -o inception_v3_2016_08_28_frozen.pb.tar.gz https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz
        tar zxvf inception_v3_2016_08_28_frozen.pb.tar.gz
        mv inception_v3_2016_08_28_frozen.pb ./models/

2. Find a .jpg file containing a shark (great white shark). Rename it to shark.jpg and copy it to the data folder on the SP7021.

...

TfInceptionV3-Armnn --data-dir=data --model-dir=models

This is not an execution error. This occurs because the TfInceptionV3-Armnn test expects a specific type of dog, cat and shark to be found so if a different type/breed of these animals is passed to the test, it returns a case failed.
The expected inputs for this test are:

ID

Label

File name

208

Golden Retriever

Dog.jpg

283

Tiger Cat

Cat.jpg

3

White Shark

shark.jpg

The complete list of supported objects can be found in https://github.com/ARM-software/armnn/blob/branches/armnn_18_11/tests/TfLiteMobilenetQuantized-Armnn/labels.txt

...

Arm NN SDK provides the following test for TensorFlow Lite models:
pi@raspberrypi:~/ArmnnTests$ ls -l ~/armnn-pi/armnn/build/tests/ | grep "TfL"
-rwxr-xr-x 1 pi pi 919808 Sep 2 05:08 TfLiteInceptionV3Quantized-Armnn
-rwxr-xr-x 1 pi pi 919808 Sep 2 05:28 TfLiteInceptionV4Quantized-Armnn
-rwxr-xr-x 1 pi pi 919656 Sep 2 05:42 TfLiteMnasNet-Armnn
-rwxr-xr-x 1 pi pi 921120 Sep 2 05:29 TfLiteMobilenetQuantized-Armnn
-rwxr-xr-x 1 pi pi 919812 Sep 2 05:14 TfLiteMobileNetQuantizedSoftmax-Armnn
-rwxr-xr-x 1 pi pi 915588 Sep 2 05:20 TfLiteMobileNetSsd-Armnn
-rwxr-xr-x 1 pi pi 919808 Sep 2 05:15 TfLiteMobilenetV2Quantized-Armnn
-rwxr-xr-x 1 pi pi 919808 Sep 2 05:02 TfLiteResNetV2-50-Quantized-Armnn
-rwxr-xr-x 1 pi pi 919656 Sep 2 05:06 TfLiteResNetV2-Armnn
-rwxr-xr-x 1 pi pi 919800 Sep 2 05:42 TfLiteVGG16Quantized-Armnn
-rwxr-xr-x 1 pi pi 666068 Sep 2 05:23 TfLiteYoloV3Big-Armnn

2.3.1 TfLiteInceptionV3Quantized-Armn

...

The Arm NN provides the following set of tests for ONNX models:
pi@raspberrypi:~/ArmnnTests$ ls -l ~/armnn-pi/armnn/build/tests/ | grep "Onn"
-rwxr-xr-x 1 pi pi 729136 Sep 2 05:08 OnnxMnist-Armnn
-rwxr-xr-x 1 pi pi 915132 Sep 2 05:01 OnnxMobileNet-Armnn


2.4.1 OnnxMnist-Armnn

1. Download and unpack the model file:

cd ~/ArmnnTests
curl -L -o mnist.tar.gz https://onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz
tar zxvf mnist.tar.gz

2. Rename the model.onnx file to mnist_onnx.onnx and copy it to the models folder on the SP7021

mv ./mnist/model.onnx ./mnist/mnist_onnx.onnx
cp ./mnist/mnist_onnx.onnx ./models/

3. Download the two archives below and unpack them:

curl -L -o t10k-images-idx3-ubyte.gz http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
curl -L -o t10k-labels-idx1-ubyte.gz http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
gzip -d t10k-images-idx3-ubyte.gz
gzip -d t10k-labels-idx1-ubyte.gz

4. Rename two files to be t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte and copy files to the data folder on the SP7021.

mv t10k-images-idx3-ubyte t10k-images.idx3-ubyte
mv t10k-labels-idx1-ubyte t10k-labels.idx1-ubyte
cp t10k-images-idx3-ubyte ./data/
cp t10k-labels-idx1-ubyte ./data/

5. Run the test:

OnnxMnist-Armnn --data-dir=data --model-dir=models
Image Modified

2.4.2 OnnxMobileNet-Armnn

  1. Download and unpack the model file:

cd ~/ArmnnTests
curl -L -o mobilenetv2-1.0.tar.gz https://s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz
tar zxvf mobilenetv2-1.0.tar.gz

2. Copy the unpacked mobilenetv2-1.0.onnx file to the models folder on the SP7021

cp ./mobilenetv2-1.0/mobilenetv2-1.0.onnx ./models/

3. Find a .jpg file containing a shark (great white shark). Rename it to shark.jpg and copy it to the data folder on the SP7021.

4. Find a .jpg file containing a dog (labrador retriever). Rename it to Dog.jpg and copy it to the data folder on the SP7021.

5. Find a .jpg file containing a cat (tiger cat). Rename it to Cat.jpg and copy it to the data folder on the SP7021.

6. Run the test:

OnnxMobileNet-Armnn --data-dir=data --model-dir=models
Image Modified


3. Python interface to Arm NN (PyArmNN)
cd ~/armnn-pi/armnn/python/pyarmnn/examples/
python3 tflite_mobilenetv1_quantized.py

python3 onnx_mobilenetv2.py

Anchor
_GoBack
_GoBack