The NPU operates at clock rates of up to 900 MHz, delivering computing performance of up to 4.5 1 TOPS (Trillion Operations Per Second). Optimized for AI models based on convolutional neural networks, it includes a Parallel Processing Unit (PPU) with 32-bit floating-point pipelining and threading.
Here are 30 20 typical models based on NPU on C3V platform, and some basic performance data have been run for your reference.
Here is our test environment:
C3V CPU uses Quad-CA55@1.5GHz with 4GB DRAM.
C3V NPU uses VIP9000@900MHz with 128MB reserved memory.
NN Tools: ACUITY v6.30.x
NPU Kernel driver: v6.4.18.5
NN Model's quantize type: int8
Here are the test results:
Model | Model Size | Input shape [n, c, h, w] | Total (DDR) read BW | Total (DDR) write BW | Average inference time | Frame rate without other latency |
AlexNet (.onnx) | 233 MB | [1, 3, 224, 224] | 47.03 (MBytes) | 1.31 (MBytes) | 8.41ms | 118.91 (fps) |
Inception-v1 (.onnx) | 27 MB | [1, 3, 224, 224] | 16.7 (MBytes) | 5.24 (MBytes) | 3.97ms | 251.89 (fps) |
Inception-v2 (.onnx) | 43 MB | [1, 3, 224, 224] | 14.47 (MBytes) | 1.84 (MBytes) | 7.68ms | 130.21 (fps) |
MobileNet-v2 (.onnx) | 14 MB | [1, 3, 224, 224] | 5.25 (MBytes) | 1.24 (MBytes) | 1.94ms | 515.46 (fps) |
EfficientNet-Lite4 (.onnx) | 50 MB | [1, 3, 224, 224] | 15.69 (MBytes) | 4.68 (MBytes) | 5.00ms | 200.00 (fps) |
ResNet-50 (.onnx) | 98 MB | [1, 3, 224, 224] | 39.61 (MBytes) | 13.28 (MBytes) | 16.29ms | 61.39 (fps) |
SqueezeNet (.onnx) | 4.8 MB | [1, 3, 224, 224] | 2.33 (MBytes) | 0.37 (MBytes) | 1.29ms | 775.19 (fps) |
VGG-16 (.onnx) | 528 MB | [1, 3, 224, 224] | 121.06 (MBytes) | 6.97 (MBytes) | 22.26ms | 44.92 (fps) |
DenseNet-121 (.onnx) | 32 MB | [1, 3, 224, 224] | 26.55 (MBytes) | 8.86 (MBytes) | 21.12ms | 47.35 (fps) |
GoogleNet (.onnx) | 27 MB | [1, 3, 224, 224] | 15.02 (MBytes) | 4.89 (MBytes) | 3.64ms | 274.73 (fps) |
CaffeNet (.onnx) | 233 MB | [1, 3, 224, 224] | 46.13 (MBytes) | 0.37 (MBytes) | 7.09ms | 141.04 (fps) |
ShuffleNet-v2 (.onnx) | 8.8 MB | [1, 3, 224, 224] | 4.14 (MBytes) | 1.93 (MBytes) | 2.09ms | 478.47 (fps) |
SSD-MobilenetV1 (.tflite) | 26.2 MB | [1, 320, 320, 3] | 11.34 (MBytes) | 5.21 (MBytes) | 5.97ms | 167.50 (fps) |
SSD-MobilenetV2 (.tflite) | 17.1 MB | [1, 320, 320, 3] | 12.21 (MBytes) | 6.04 (MBytes) | 5.17ms | 193.42 (fps) |
YOLO-v2 (.onnx) | 203.9 MB | [1, 3, 416, 416] | 47.16 (MBytes) | 6.70 (MBytes) | 11.50ms | 86.96 (fps) |
YOLO-v5s (.onnx) | 27.9 MB | [1, 3, 640, 640] | 87.91 (MBytes) | 46.65 (MBytes) | 43.64ms | 22.91 (fps) |
YOLO-v5s-seg (.onnx) | 29.4 MB | [1, 3, 640, 640] | 130.79 (MBytes) | 78.22 (MBytes) | 58.46ms | 17.11 (fps) |
YOLO-v8s-seg (.onnx) | 45 MB | [1, 3, 640, 640] | 163.19 (MBytes) | 101.29 (MBytes) | 64.45ms | 15.52 (fps) |
ArcFace (.onnx) | 248.9 MB | [1, 3, 112, 112] | 46.19 (MBytes) | 5.32 (MBytes) | 17.37ms | 57.57 (fps) |
DeepLab-v3p (.onnx) | 22.1 MB | [1, 3, 640, 640] | 385.65 (MBytes) | 129.15 (MBytes) | 107.76ms | 9.28 (fps) |
3DDFA (.onnx) | 12.4 MB | [1, 3, 120, 120] | 2.03 (MBytes) | 0.35 (MBytes) | 0.55ms | 1818.18 (fps) |
YOLO-v10n (.onnx) | 9.39 MB | [1, 3, 640, 640] | 3204.12 (MBytes) | 3186.14 (MBytes) | 6477.36ms | 0.15 (fps) |
YOLO-v10s (.onnx) | 29.2 MB | [1, 3, 640, 640] | 3258.21 (MBytes) | 3219.47 (MBytes) | 6513.48ms | 0.15 (fps) |
YOLO-v10n - postprocess | 9.39 MB - postprocess | [1, 3, 640, 640] | 46.92 (MBytes) | 33.88 (MBytes) | 36.31ms | 27.54 (fps) |
YOLO-v10s - postprocess | 29.2 MB - postprocess | [1, 3, 640, 640] | 102.23 (MBytes) | 68.58 (MBytes) | 68.81ms | 14.53 (fps) |
Note:
“xxx - postprocess” means removing post-processing (--outputs set to '/model.23/Transpose_output_0').
If you want to refer to more detailed performance data about YOLOV8, please refer here.