This is the document on how to test the YOLOv8s detection map with the COCO 2017.
Table of Contents | ||
---|---|---|
|
1. Prerequest
1.1. Provided Files
Unzip Download C3V_Validation_Resources_v1.0.zip and unzip the provided zipped file. We use 'provided_files' to represent the folder where you unzip the file to. The folder structure is as follows:
...
The results will be printed in the terminal as follows:
...
3.3. Inference by C code
3.3.1. Prepare the environment
...
(C3V Board)
Code Block |
---|
sudo apt update sudo apt install python3-pip libopencv-dev libjsoncpp-dev pip install pycocotools |
3.3.2. Prepare the project (Ubuntu PC)
Download the mapTestTools, the .zip and unzip the provided zipped file. The project code tree like this:
...
Code Block |
---|
#include "common.h" #include "vnn_quantized_extracted_yolov8s_inspiren.h" vsi_nn_graph_t * vnn_CreateGraph(const char *data_file_name, vsi_nn_context_t in_ctx, const vsi_nn_preprocess_map_element_t *pre_process_map, uint32_t pre_process_map_count, const vsi_nn_postprocess_map_element_t *post_process_map, uint32_t post_process_map_count) { return vnn_Createquantized_extracted_yolov8s_inspiren(data_file_name, in_ctx, pre_process_map, pre_process_map_count, post_process_map, post_process_map_count); } void vnn_ReleaseGraph(vsi_nn_graph_t *graph, vsi_bool release_ctx) { vnn_Releasequantized_extracted_yolov8s_inspiren(graph, release_ctx); } |
3.3.3. Build and Evaluation
...
(C3V Board)
Copy the project files to the C3V, and build it on C3V Ubuntu with follow command.
...