Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Case download:
uart_apb.zip

1 Design Brief

UART (Universal Asynchronous Receiver Transmitter) is short for Universal Asynchronous Receiver and Transmitter. Used for communication between serial input and serial output devices. Serial transmission comes at the cost of speed, in exchange for a reduction in cost and complexity of wiring. UART provides synchronization of serial asynchronous received data, parallel-to-serial and serial-to-parallel data conversion of the transmitter and receiver, for digital systems that need to convert serial data streams to parallel data, these functions Is essential. Synchronization of the serial data stream is achieved by adding start and stop bits to the transmitted data to form a data character. Data integrity is achieved by appending a parity bit to the data character, which is provided by the receiver Check this parity bit to check whether there is any transmission bit error. It is mainly composed of data bus interface, control logic, baud rate generator, sending part and receiving part.

...

The UART controller IP core design is the AMBA APB slave bus interface, and our FBIO Wrapper is the AMBA AXI bus interface, which cannot be directly connected together, and requires an AXI2ABP Bridge to connect;

...

We choose apb_ bus_ m32_bridge module from Bus Bridge series, it provides APB master bus interface to connect our IP,as shown in the figure below;

...

This experiment uses the FPGA daughter board supporting the Plus1 7021 SP7021 SOC practice platform to complete the relevant experiment. The experiment is carried out in loopback mode, which is to connect the TX and RX of the UART controller IP core design; The development tool of FPGA daughter board uses XILINX's Vivado integrated development environment (version number is 2018.3); in order to facilitate the connection of the user's own verification IP to the SOC system for verification, this experiment provides the corresponding design reference basic files, as followsImage Removed

...

The corresponding connection between the design case and the pin connection of the SP7021 motherboard and FPGA daughter board is shown in the following table: 1: U20B on the main board is connected to J2 of the FPGA daughter board (Pin pin corresponding, such as 1-51 ...), providing the data transmission channel between the Plus1 main chip on the main board and the FPGA Image Removed

...

Design Demo

FPGA daughter board

SP7021 mother board

uart_apb

J2

U1E

U20B

Top Port Name

Schematic Name

FPGA I/O

Schematic Name

 

1

GND

 

51

GND

 

2

GND

 

52

GND

FPGA_PAD[0]

3

B34_L24_N

T8

53

FBIO_PAD_0

FPGA_PAD[43]

4

B34_L24_P

R8

54

FBIO_PAD_1

 

5

VIN

 

55

VCC(3.3V)

 

6

VCCIO34

 

56

VCC(3.3V)

FPGA_PAD[1]

7

B34_L21_N

V9

57

FBIO_PAD_2

FPGA_PAD[42]

8

B34_L21_P

U9

58

FBIO_PAD_3

FPGA_PAD[2]

9

B34_L18_N

N6

59

FBIO_PAD_4

FPGA_PAD[41]

10

B34_L18_P

M6

60

FBIO_PAD_5

FPGA_PAD[3]

11

B34_L22_N

U6

61

FBIO_PAD_6

FPGA_PAD[40]

12

B34_L22_P

U7

62

FBIO_PAD_7

FPGA_PAD[4]

13

B34_L20_N

V6

63

FBIO_PAD_8

FPGA_PAD[39]

14

B34_L20_P

V7

64

FBIO_PAD_9

FPGA_PAD[5]

15

B34_L23_N

T6

65

FBIO_PAD_10

FPGA_PAD[38]

16

B34_L23_P

R7

66

FBIO_PAD_11

FPGA_PAD[6]

17

B34_L10_N

V4

67

FBIO_PAD_12

FPGA_PAD[37]

18

B34_L10_P

V5

68

FBIO_PAD_13

FPGA_PAD[7]

19

B34_L19_P

R6

69

FBIO_PAD_14

FPGA_PAD[36]

20

B34_L19_N

R5

70

FBIO_PAD_15

FPGA_PAD[8]

21

B34_L8_P

U4

71

FBIO_PAD_16

FPGA_PAD[35]

22

B34_L8_N

U3

72

FBIO_TCLK

FPGA_PAD[9]

23

B34_L9_N

V2

73

FBIO_RCLK

FPGA_PAD[34]

24

B34_L9_P

U2

74

FBIO_PAD_17

FPGA_PAD[10]

25

B34_L7_N

V1

75

FBIO_PAD_18

FPGA_PAD[33]

26

B34_L7_P

U1

76

FBIO_PAD_19

FPGA_PAD[11]

27

B34_L13_P

N5

77

FBIO_PAD_20

FPGA_PAD[32]

28

B34_L13_N

P5

78

FBIO_PAD_21

FPGA_PAD[12]

29

B34_L12_P

T5

79

FBIO_PAD_22

FPGA_PAD[31]

30

B34_L12_N

T4

80

FBIO_PAD_23

FPGA_PAD[13]

31

B34_L11_N

T3

81

FBIO_PAD_24

FPGA_PAD[30]

32

B34_L11_P

R3

82

FBIO_PAD_25

FPGA_PAD[29]

33

B34_L14_P

P4

83

FBIO_PAD_26

FPGA_PAD[28]

34

B34_L14_N

P3

84

FBIO_PAD_27

FPGA_PAD[14]

35

B34_L16_N

N4

85

FBIO_PAD_28

FPGA_PAD[27]

36

B34_L16_P

M4

86

FBIO_PAD_29

FPGA_PAD[15]

37

B34_L17_N

T1

87

FBIO_PAD_30

FPGA_PAD[26]

38

B34_L17_P

R1

88

FBIO_PAD_31

FPGA_PAD[16]

39

B34_L15_N

R2

89

FBIO_PAD_32

FPGA_PAD[25]

40

B34_L15_P

P2

90

FBIO_PAD_33

FPGA_PAD[17]

41

B34_L3_N

N1

91

FBIO_PAD_34

FPGA_PAD[24]

42

B34_L3_P

N2

92

FBIO_PAD_35

FPGA_PAD[18]

43

B34_L1_N

M1

93

FBIO_PAD_RSTB

FPGA_PAD[23]

44

B34_L1_P

L1

94

EXT0_INT

 

45

VCCIO34

 

95

VCC(3.3V)

 

46

VIN

 

96

VCC(3.3V)

FPGA_PAD[19]

47

B34_L4_P

M3

97

EXT1_INT

FPGA_PAD[20]

48

B34_L4_N

M2

98

 

 

49

GND

 

99

GND

 

50

GND

 

100

GND

2: U20A on the motherboard is connected to J1 of the FPGA daughter board (Pin pins correspond to one, such as 1-1 ...), and the 42 pin IO (3.3v) of FPGA Bank 35 is extended via J17 for users to use

...

Design Demo

FPGA daughter board

SP7021 mother board

uart_apb

J1

U1F

U20A

J17

Top Port Name

Schematic Name

FPGA I/O

Schematic Name

Schematic Name

 

1

GND

 

1

GND

3

GND

 

2

GND

 

2

GND

4

GND

 FPGA_TX

3

B35_L23_N

K1

3

B35_L23_N

5

B35_L23_N

 

4

B35_L23_P

K2

4

B35_L23_P

6

B35_L23_P

 

5

VIN

 

5

VIN

1

VCC

 

6

VCCIO35

 

6

VCCIO35

2

VCC

 FPGA_RX

7

B35_L15_N

G2

7

B35_L15_N

7

B35_L15_N

 

8

B35_L15_P

H2

8

B35_L15_P

8

B35_L15_P

 

9

B35_L13_N

F3

9

B35_L13_N

9

B35_L13_N

 

10

B35_L13_P

F4

10

B35_L13_P

10

B35_L13_P

 

11

B35_L12_N

D3

11

B35_L12_N

11

B35_L12_N

 

12

B35_L12_P

E3

12

B35_L12_P

12

B35_L12_P

 

13

B35_L22_P

J3

13

B35_L22_P

13

B35_L22_P

 

14

B35_L22_N

J2

14

B35_L22_N

14

B35_L22_N

 

15

B35_L17_N

G1

15

B35_L17_N

15

B35_L17_N

 

16

B35_L17_P

H1

16

B35_L17_P

16

B35_L17_P

 

17

B35_L18_N

E1

17

B35_L18_N

17

B35_L18_N

 

18

B35_L18_P

F1

18

B35_L18_P

18

B35_L18_P

 

19

B35_L14_N

D2

19

B35_L14_N

19

B35_L14_N

 

20

B35_L14_P

E2

20

B35_L14_P

20

B35_L14_P

 

21

B35_L16_P

C2

21

B35_L16_P

21

B35_L16_P

 

22

B35_L16_N

C1

22

B35_L16_N

22

B35_L16_N

 

23

B35_L9_N

A1

23

B35_L9_N

23

B35_L9_N

 

24

B35_L9_P

B1

24

B35_L9_P

24

B35_L9_P

 

25

B35_L10_P

B3

25

B35_L10_P

25

B35_L10_P

 

26

B35_L10_N

B2

26

B35_L10_N

26

B35_L10_N

 

27

B35_L8_N

A3

27

B35_L8_N

27

B35_L8_N

 

28

B35_L8_P

A4

28

B35_L8_P

28

B35_L8_P

 

29

B35_L11_N

D4

29

B35_L11_N

29

B35_L11_N

 

30

B35_L11_P

D5

30

B35_L11_P

30

B35_L11_P

 

31

B35_L3_N

A5

31

B35_L3_N

31

B35_L3_N

 

32

B35_L3_P

A6

32

B35_L3_P

32

B35_L3_P

 

33

B35_L2_N

B6

33

B35_L2_N

33

B35_L2_N

 

34

B35_L2_P

B7

34

B35_L2_P

34

B35_L2_P

 

35

B35_L7_N

B4

35

B35_L7_N

35

B35_L7_N

 

36

B35_L7_P

C4

36

B35_L7_P

36

B35_L7_P

 

37

B35_L1_N

C5

37

B35_L1_N

37

B35_L1_N

 

38

B35_L1_P

C6

38

B35_L1_P

38

B35_L1_P

 

39

B35_L5_N

E5

39

B35_L5_N

39

B35_L5_N

 

40

B35_L5_P

E6

40

B35_L5_P

40

B35_L5_P

 

41

B35_L6_N

D7

41

B35_L6_N

41

B35_L6_N

 

42

B35_L6_P

E7

42

B35_L6_P

42

B35_L6_P

 

43

B35_L19_P

G6

43

B35_L19_P

43

B35_L19_P

 

44

B35_L19_N

F6

44

B35_L19_N

44

B35_L19_N

 

45

VCCIO35

 

45

VCCIO35

 49 

VCC

 

46

VIN

 

46

VIN

 50 

VCC

 

47

B35_L4_N

C7

47

B35_L4_N

45

B35_L4_N

 

48

B35_L4_P

D8

48

B35_L4_P

46

B35_L4_P

 

49

GND

 

49

GND

 47 

GND

 

50

GND

 

50

GND

 48 

GND

6.2Implementation of System Software Platform for UART Controller IP Design Experiment Project

在IDE 环境中如下图所示,选择sp7021工程名,单击鼠标右键在弹出的菜单中选Copy

...

接下来再次选择sp7021工程名

...

单击鼠标右键在弹出的菜单中选Paste,出现下图

...

在Project name框中填写uart_apb,完成uart_apb工程名及目录建立,如下图所示

...

接下来需要复制安装目录In the IDE environment, as shown below, select the sp7021 project name, click the right mouse button and select Copy in the pop-up menu

...

Next, select the sp7021 project name again

...

Click the right mouse button and select Paste in the pop-up menu, the following picture appears

...

Fill in the uart_apb in the Project name box to complete the establishment of the uart_apb project name and directory, as shown below

...

Next, you need to copy all the files and folders under the installation directory \SP7021\example\uart_apb下的所有文件及文件夹到上面建好的uart_apb工程目录中(路径为:安装目录 apb to the uart_apb project directory built above (the path is: installation directory \SP7021\workspace\uart_apb\),同名文件选择覆盖,这样UART控制器 IP设计实践所需的程序代码main.c;uart.c;uart.h分别放到如下的路径中:1) 安装目录 , the file with the same name is selected to be overwritten, so that the UART The program codes main.c; uart.c; uart.h required for the IP design practice of the controller are placed in the following paths:

1) In the install directory \SP7021\workspace\uart_apb\ 文件夹下的mainmain.c

2) 安装目录 In the install directory \SP7021\workspace\uart_apb\testapi\util 文件夹下的uart\uart.c

3) 安装目录 In the install directory \SP7021\workspace\uart_apb\include\util文件夹下的uartutil\uart.h

最后按下图所示,鼠标选中红框1,接着点击鼠标右键出现下拉菜单,然后选中红框2,对刚才复制动作做刷新,这样刚才复制的文件就能在IDE环境中显示出来

...

main.c

int main(void)

{

    printf("Build @%s, %s\n", __DATE__, __Finally, as shown in the figure below, the mouse selects the red box 1, then clicks the right mouse button to appear the drop-down menu, and then selects the red box 2, refresh the copy action just now, so that the file just copied can be displayed in the IDE environment

...

main.c

int main(void)

{

    printf("Build @%s, %s\n", __DATE__, __TIME__);

    hw_init();

    sys_init();

    fbio_init();

    uart_ctl();

    disp_hdmi_init();

    uart_interrupt_init(); /*uart interrupt configure */

    sp_interrupt_setup(); /* system interrupt manager module init */

    printf("UART IP test ready ");

    while(1)

{

        unsigned int i;

        for (i = 0; i < 256; i++)

            {

               while   while(1)

                {

                   if   if((uart_reg->LSR&0x20)==0x20)

                  {

                     uart_reg->SER=0x3f;

                     uart_reg->TX_FIFO=i;

                     printf("@tx_data [%d]\n", i);

                     uart_reg->SER=0x3e;

                      break          break;

                   }

                }

            }

    }

}

对比数码管控制IP实验,增加了uartCompared with the digital tube control IP experiment, the uart_ctl () 函数,用来完成UART的配置及初始化操作,如下讲解。function is added to complete the configuration and initialization of the UART, as explained below.

void uart_ctl()

{

    uart_reg->LCR=0x20;

    printf("@LCR[%x]\n", temp);

    uart_reg->SER=0x3e;

    printf("@SER[%x]\n", temp);

    ///////////////// system clock is 65.057MHz//////65057000/16/buad//////

    uart_reg->BUAD_CNT=0x1A9; //9600

    printf("@BUAD_CNT[%x]\n", temp);

}实现UART控制IP的配置及初始化操作,如下:

Realize the configuration and initialization operation of UART control IP as follows:

uart_reg->LCR=0x20;

设置UART 为8bit 数据位,1bit 停止位,无校验位;

uart_reg->SER=0x3e;

设置UART 中断为:允许接收数据完成后产生中断;禁止发送数据完成后产生中断;禁止接收数据出现停止位,校验位错时产生中断;禁止接收数据FIFO满时产生中断;禁止发送数据FIFO空时产生中断;Set UART to 8bit data bit, 1bit stop bit, no parity bit;

uart_reg->SER=0x3e;

Set the UART interrupt to: allow interrupts to be generated after receiving data is complete; disable interrupts to be generated after data transmission is complete; prohibit stop bits from receiving data and generate interrupts when the check bit is wrong; disable interrupts when receiving data FIFO is full; Generate an interrupt;

uart_reg->BUAD_CNT=0x1A9;

设置UART 波特率为9600Set the UART baud rate to 9600;

下面介绍The following introduces while (1) loop

if((uart_reg->LSR&0x20)==0x20) : 判断接收数据FIFO为空Judge that the received data FIFO is empty

uart_reg->SER=0x3f; Forbid receiving data interruption; 禁止接收数据中断;

uart_reg->TX_FIFO=i; 将数据i送到TX Send data i to TX FIFO;

uart_reg->SER=0x3e;  允许接收数据完成后产生中断  Allow interrupt generation after receiving data

uart.c

#include "common_all.h"

#include "cache.h"

#include "sp_interrupt.h"

#define FPGA_EXT0_INT  (29)

#define FPGA_EXT1_INT  (30)

static unsigned int g_repeat_cnt = 0;

unsigned int rx_data;

void fpga_ext0_interrupt_control_mask(int enable)

void fpga_ext1_interrupt_control_mask(int enable)

static void fpga_ext0_isr_cfg()

static void fpga_ext1_isr_cfg()

void fpga_ext0_callback(void)

void fpga_ext1_callback(void)

void uart_interrupt_init ()

void fpga_ext1_test_init()

对比数码管控制IP实验的led.c,结构类似,不同的是中断处理程序不同,如下讲解Compared with the LED.c of the LED control IP experiment, the structure is similar, the difference is that the interrupt handler is different, as explained below

void fpga_ext0_callback(void)

{

    rx_data=uart_reg->RX_FIFO;

    printf("@rx_data [%d]\n", rx_data);

    uart_reg->LSR=0x0;

}此中断处理程序的作用:将RX FIFO收到的8bit数据取出;然后清除本次中断的状态标识bit,这样就完成了1byte数据的串行接收和发送实验。

The role of this interrupt handler: take the 8bit data received by the RX FIFO; then clear the status flag bit of this interrupt, so that the serial reception and transmission experiments of 1byte data are completed.

uart.h

#ifndef __FPGAINT_H__

#define __FPGAINT_H__

#define  #define  FBIO_BASE_ADDR 0x70000000

typedef struct uart_reg_s {

    unsigned long LCR;

    unsigned long SER;

    unsigned long BUAD_CNT;

    unsigned long LSR;

    unsigned long RX_FIFO;

    unsigned long TX_FIFO;

} uart_reg_t;

extern uart_reg_t *uart_reg;

void uart_interrupt_init ();

void fpga_ext1_test_init();

#endif // __FPGAINT_H__

定义了UART控制IP相关寄存器

程序代码运行

在Plus1 IDE环境中compile后,下载到平台,在terminal窗口看到如下信息Defined UART control IP related registers

6.3 Run Program code

After compile in the Plus1 IDE environment, download to the platform and see the following information in the terminal window

...