Target of the V1.1.0
This is the formal release V1.1.0 of SNNF(Sunplus Neural Network Framework).
On the basis of v1.0.0, v1.1.0 mainly has the following updates:
Add some NN module.
genderage: gender and age
Det_10g + genderage
LightFace + genderage
Based on the current main framework of SNNF, provide a porting tool so that users can easily add a new model to the Customized zone using the official generated nbg code as the source. The initial version of this tool is currently available, and there will be further updates in the next version.
Fix some known issues, such as:
OCR have a probability of crashing.
HumanAttr have a probability of crashing.
When multiple models are connected in series, if the last model comes out, the result may have an unfinished flag fin=false.
Standardize post-process code.
Organize samples and unittest codes:
samples
is a sample code for snnf command sample which is just for snnf_run.sh.unittest/modelTest
is just for a buildin model's test sample.unittest/pluginTest
is just for the plugin model's test sample.unittest/sequntialTest
is the sample for the pipeline in which several models are sequentially linked together in series.Add NN filter, which can facilitate users to do their own private data processing at the application layer. Users only need to insert the filter directly into the corresponding position of the pipeline when creating the model flow, and then perform private and correct processing at the most appropriate location. The advantage of this is that there is no need to write a dedicated module within SNNF for this private processing, only the official interface of SNNF needs to be called. Of course, SNNF provides some commonly used private processing filters internally, such as label filtering. For example, when Object Detect+HumanAttr, the label results of Object Detect can be filtered, and only the person can be passed to HumanAttr. If the requirements of the application layer happen to match this usage, there is no need to implement it yourself at the application layer. Simply call the methods provided by SNNF.
Provide users with a mAP test sample to compare the precision of the C3V platform's model running results with the precision of the model's official PC running results. The default test model is yolov8s object detection. Users can refer to this mAP sample to rewrite the model they need to test mAP values for.
Improve the toString() function for each model's result, and support the detection result toString JSON format.
Update some make config.
In addition to cross compilation on the server, we also provide compilation methods on the C3V platform.
If it is cross compilation on the server, please confirm the config
CROSS_COMPILE := ON
in makefile_config.mk .If compilation is required on the C3V platform, please confirm the config
CROSS_COMPILE := OFF
in makefile_config.mk .Users can choose the model plugin in makefile_config.mk that needs to be compiled according to their own needs, which can effectively reduce the code size of specific projects and shorten compilation time.
# ------------------------------------------------------------------------ # define which PLUGIN to build NN_PLUGIN_ENABLE_YOLOV5S_V2 := yes NN_PLUGIN_ENABLE_RTMDETS := no NN_PLUGIN_ENABLE_GEDERAGE := no NN_PLUGIN_ENABLE_YOLOV8S_DETECTION := no NN_PLUGIN_ENABLE_YOLOV8S_OBB := no NN_PLUGIN_ENABLE_YOLOV8S_POSE := no NN_PLUGIN_ENABLE_YOLOV8S_SEGMENT := no NN_PLUGIN_ENABLE_YOLOV10S_DETECTION := no NN_PLUGIN_ENABLE_YOLOV8N_CCPD := no NN_PLUGIN_ENABLE_YOLOV8N_OBB_OPTI := no NN_PLUGIN_ENABLE_YOLOV8N_POSE_OPTI := no NN_PLUGIN_ENABLE_YOLOV8N_SEGMENT_OPTI := no NN_PLUGIN_ENABLE_YOLOV8N_DETECTION_OPTI := no NN_PLUGIN_ENABLE_YOLOV8S_DETECTION_OPTI := no NN_PLUGIN_ENABLE_BOTSORT_TRACK := no
Adjust the access of certain model header files and provide more necessary header files for the application layer to use.
Change the bbox value type from uint to float. Although this change does not have a substantial impact on the rendering of the results, it can make the precision value more accurate when calculating mAP.
In previous versions, assist modules such as imageWriter/videoWriter/JsonWriter only supported the default filename. Starting from this version, we will support filename config.
Also provide release folder so that new users can easily preview or evaluate our SNNF demo without spending too much time on environment setup and code compilation.
Resource
Please get the V1.1.0 release resource here.
Before starting any work, please carefully read the instruction files such as readme.md in the document directory.
Usage of V1.1.0
How to verify Official Demos
You can use the script we provide to start as follows:
/SNNF/release # ./snnf_run.sh Usage: ./bin/snnf_nnsample [-m|-s|-a|-h] [-i|-v|-o|option] Version: 1.1.0_ Time: [-m,--model <model>] run a single model <model>:Age Det10g HumanAttr HumanFilter LightFace OcrCls OcrDet OcrRec VehicleAttr VehicleFilter W600kR50 YoloV8sOdMap Yolov5sDetection Yolov5sV1 Yolov8nClassify Yolov8sClassify stgcn Yolov5sV2 BotSortTrackStgcn GenderAge Rtmdets YoloV10sDetection YoloV8nCcpdOpti YoloV8nDetectionBaseOpti YoloV8nDetectionOpti YoloV8nObbOpti YoloV8nPoseOpti YoloV8nSegmentOpti YoloV8sDetection YoloV8sDetectionBaseOpti YoloV8sDetectionOpti YoloV8sObb YoloV8sPose YoloV8sSegment example:./bin/snnf_nnsample -m Yolov5sDetection ./bin/snnf_nnsample --model HumanAttr [-s,--sequential <model1,model2,...>] run sequential models <models>:Yolov5sDetection,HumanFilter,HumanAttr LightFace,Age OcrDet,OcrRec OcrDet,OcrCls,OcrRec YoloV8nCcpdOpti,OcrRec Det10g,W600kR50 YoloV8sDetection,VehicleFilter,VehicleAttr YoloV8nDetectionOpti,BotSortTrack YoloV8nPoseOpti,BotSortTrackStgcn YoloV8nCcpdOpti,OcrRec YoloV8nCcpdOpti,OcrCls,OcrRec example:./bin/snnf_nnsample -s Yolov5sDetection,HumanFilter,HumanAttr ./bin/snnf_nnsample --sequential ocrDet,ocrCls,ocrRec ./bin/snnf_nnsample -s YoloV8nCcpdOpti,OcrRec,imageWriter ./bin/snnf_nnsample -s YoloV8sDetectionOpti,BotSortTrack,videoWriter -v resource/video/humanCount.mp4 ./bin/snnf_nnsample -s YoloV8nPoseOpti,BotSortTrackStgcn,videoWriter -v resource/video/person-falling.mp4 [-i,--image file] set image file to nn detection. <file>: file name [-c | option]: test count, this parameter is only match with -i example:./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr -i filename -c testCount ./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr --image filename -c testCount [-v,--video file] set video file to nn detection. <file>: file name example:./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr -v filename ./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr --video filename [-o,--output file] specify the output file name for saving results. <file>: file name with extension (e.g., output.jpg, output.json, output.mp4) This parameter must be used in conjunction with imageWriter, jsonWriter, or videoWriter. example:./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr,imageWriter -i filename -o output.jpg ./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr,jsonWriter -i filename -o output.json ./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr,videoWriter -v filename -o output.mp4 [-a,--all] run all model testing assist tools: imageWriter videoWriter jsonWriter BotSortTrack HumanFilter VehicleFilter
Release folder structure
bin: nnf_nnsample. Prebuild sample programs that can run on the c3v Linux platform.
include:header file of NN framework SDK.
lib:libraries of NN framework SDK.
resource
config: some config files for features.
font: ttf file for plotting sample.
image: image files used for test.
model: models to be used in the sample program.
video: video files used for test.
samples:example code for using NN framework.
snnf_run.sh:executable script for running sample code.
thirdparty: just as its name implies.
How to run NN framework sample
Copy the release foler to C3V Linux.
/SNNF/release # ls -alh total 36 drwxr-xr-x 8 xxx B400 4096 Sep 30 14:23 ./ drwxr-xr-x 15 xxx B400 4096 Sep 30 14:15 ../ drwxr-xr-x 2 xxx B400 4096 Sep 30 14:15 bin/ drwxr-xr-x 6 xxx B400 4096 Sep 30 14:15 include/ drwxr-xr-x 3 xxx B400 4096 Sep 30 14:15 lib/ drwxr-xr-x 7 xxx B400 4096 Sep 30 14:15 resource/ drwxr-xr-x 4 xxx B400 4096 Sep 30 14:15 samples/ -rwxr-xr-x 1 xxx B400 262 Sep 30 14:15 snnf_run.sh* drwxr-xr-x 7 xxx B400 4096 Sep 30 14:15 thirdparty/
Run nnf_run.sh to run the NNF sample.
a. One-time input
./snnf_run.sh -m YoloV8sDetection
#./snnf_run.sh -m YoloV8sDetection 1727625905242|7fad06c020|T|common: [app]YoloV8sDetection in 1727625905261|7fad06c020|I|common: [nn]create model from pluginName: YoloV8sDetection takes: 17 1727625905722|7f96fdf0e0|I|common: [nn]picked: 5 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 35 196 158 403) --> label: 0(person), confidence: 0.89, fin: false 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 526 185 112 392) --> label: 0(person), confidence: 0.87, fin: false 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 173 203 97 360) --> label: 0(person), confidence: 0.86, fin: false 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 0 321 44 253) --> label: 0(person), confidence: 0.75, fin: false 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 12 66 625 403) --> label: 5(bus), confidence: 0.74, fin: true 1727625905781|7fad06c020|T|common: [app]YoloV8sDetection out, retVal: 0
b. Read input from the image file
./snnf_run.sh -m YoloV8nDetectionOpti -i resource/image/person640x640.jpg
# ./snnf_run.sh -m YoloV8nDetectionOpti -i resource/image/person640x640.jpg 1727626580087|7fbd7de020|T|common: [app]YoloV8nDetectionOpti in 1727626582152|7fbd7de020|I|common: [nn]create model from pluginName: YoloV8nDetectionOpti takes: 2063 1727626582574|7fa569a0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/person640x640.jpg, the result: (box: 0 19 614 619) --> label: 0(person), confidence: 0.87, fin: true 1727626582622|7fbd7de020|T|common: [app]YoloV8nDetectionOpti out, retVal: 0
c. Read inputs from the video file.
./snnf_run.sh -m YoloV8nDetectionOpti -v resource/video/humanCount.mp4
# ./snnf_run.sh -m YoloV8nDetectionOpti -v resource/video/humanCount.mp4 1727626644381|7faf81e020|T|common: [app]streaming in 1727626645952|7faf81e020|I|common: [nn]create model from pluginName: YoloV8nDetectionOpti takes: 1388 1727626646044|7f951d80e0|T|common: [app]streaming test: runner func in 1727626646304|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 671 129 307 873) --> label: 0(person), confidence: 0.90, fin: false 1727626646305|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 0 364 268 461) --> label: 7(truck), confidence: 0.38, fin: true 1727626646375|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 672 127 325 873) --> label: 0(person), confidence: 0.90, fin: false 1727626646375|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 0 364 267 461) --> label: 7(truck), confidence: 0.39, fin: true 1727626646440|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 671 125 327 878) --> label: 0(person), confidence: 0.90, fin: false 1727626646440|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 0 364 267 460) --> label: 7(truck), confidence: 0.41, fin: true 1727626646498|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 673 125 323 878) --> label: 0(person), confidence: 0.90, fin: false ...... 1727626682667|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 977 159 330 894) --> label: 0(person), confidence: 0.91, fin: false 1727626682667|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 668 262 270 708) --> label: 0(person), confidence: 0.86, fin: false 1727626682667|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 1 363 267 457) --> label: 7(truck), confidence: 0.35, fin: false 1727626682667|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 465 26 1454 1003) --> label: 6(train), confidence: 0.32, fin: false 1727626682667|7f959e80e0|T|common: [app]GeneralModelOutputListener detect from , the result: (box: 847 565 173 403) --> label: 0(person), confidence: 0.26, fin: true 1727626686753|7faf81e020|T|common: [app]q to quit
d. Sequential models
./snnf_run.sh -s Yolov5sDetection,HumanAttr
# ./snnf_run.sh -s Yolov5sDetection,HumanAttr 1727627713332|7fa3285020|T|common: [app]sequential in 1727627713501|7fa3285020|T|common: [app]input image name: resource/image/person.jpg 1727627713833|7f937c50e0|T|common: [nn]detectedInfos: 1 1727627713833|7f937c50e0|T|common: [app]human attr(box: 606 141 274 655) --> result: Male Age18-60 Direct: Front Glasses: True Hat: False HoldObjectsInFront: False Bag: No bag Upper: ShortSleeve UpperStride Lower: Trousers Shose: No boots 1727627713833|7f937c50e0|T|common: [nn]detectedInfos: 1 1727627713833|7f937c50e0|T|common: [app]human attr(box: 308 188 207 591) --> result: Female Age18-60 Direct: Back Glasses: False Hat: False HoldObjectsInFront: False Bag: ShoulderBag Upper: ShortSleeve UpperLogo Lower: LowerPattern Shorts Shose: No boots 1727627718787|7fa3285020|T|common: [app]sequential out, retVal: -0x0
e. Model inference results save to image.
./snnf_run.sh -s YoloV8sPose,imageWriter
# ./snnf_run.sh -s YoloV8sPose,imageWriter 1727627887700|7fafe27020|T|common: [app]sequential in 1727627887700|7fafe27020|T|common: [app]warning: sequential model list(not tested) 1727627887725|7fafe27020|I|common: [nn]create model from pluginName: YoloV8sPose takes: 24 1727627887858|7fafe27020|T|common: [app]input image name: resource/image/pose_input.jpg 1727627888707|7f9db2a0e0|I|common: [nn]picked: 5 1727627888707|7f9db2a0e0|I|common: [nn]plot: 0 91%, [(852, 142) - (1169, 753)], person 1727627888710|7f9db2a0e0|I|common: [nn]plot: 0 89%, [(1689, 187) - (1835, 642)], person 1727627888711|7f9db2a0e0|I|common: [nn]plot: 0 89%, [(61, 123) - (232, 601)], person 1727627888711|7f9db2a0e0|I|common: [nn]plot: 0 88%, [(1337, 330) - (1441, 679)], person 1727627888712|7f9db2a0e0|I|common: [nn]plot: 0 87%, [(369, 252) - (480, 671)], person 1727627888839|7f9db2a0e0|T|common: [app]write an image: detected_1883_0931_1727627888712.jpg 1727627893526|7fafe27020|T|common: [app]sequential out, retVal: -0x0
Results will save to the image detected_1883_0931_1727627888712.jpg
.
How to build SNNF
Cross-compile for C3V environment.
a. Please use snnf_build.sh
for SNNF compiling.
b. All the resource will installed to release folder.
Copy release folder to the C3V platform.
Setup environment variable.
a. Setting environment variables independently.
export LD_LIBRARY_PATH=${PWD}/lib:${PWD}/thirdparty/opencv4/lib:${PWD}/thirdparty/pytorch/lib:${PWD}/thirdparty/freetype/lib:${PWD}/thirdparty/libpng/lib:${LD_LIBRARY_PATH}
b. Run snnf_run.sh
will auto set environment variables.
Then, you can run snnf_run.sh for SNNF sample.
Models reference
Model Name | Version or Path |
Yolov5s | https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt |
Human Attributes | https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.zip |
Light Face | |
Optical character recognition |
|
Age recognition | https://gitcode.com/smahesh29/Gender-and-Age-Detection/commits/master 7c024d9d453c9b35a72a984d8821b5832ef17401 |
Yolov8 Detection | |
Yolov8 Pose | |
Yolov8 OBB | |
Yolov8 Segmentation | |
Yolov8 Classification | |
Vehicle attributes | https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip |
License plate recognition | CCPD2020 Yolov8 CCPD detection OCR |
Yolov10 Detection | |
RTMDet | |
Face Recognition | |
Object tracking | BotSort |
Falling Recognition | STGCN |