/
V1.0.0 of SNNF

V1.0.0 of SNNF

This version is the first time, we formal release the SNNF(Sunplus Neural Network Framework), the original version is V1.0.0.

Target of the V1.0.0

There are some release notes for the version which are as below:

  1. There are some NN modules and Samples.

    1. lightFace;

    2. age;

    3. lightFace + age;

    4. det_10g;

    5. det_10g + w600k_r50;

    6. humanAttr;

    7. yolov5s + humanAttr;

    8. vehicleAttr;

    9. yolov8s_detection + vehicleAttr;

    10. yolov8s_detection;

    11. yolov8s_obb;

    12. yolov8s_pose;

    13. yolov8s_segment;

    14. yolov8s_classify;

    15. yolov10s_detection;

    16. yolov8n_obb_opti;

    17. yolov8n_pose_opti;

    18. yolov8n_segment_opti;

    19. yolov8n_detection_opti;

    20. yolov8n_classify;

    21. RTMDet-s;

    22. Human tracking;

    23. Human falling detection;

    24. yolov5s_detection;

    25. OCRDet;

    26. OCRCls;

    27. OCRRec;

    28. OCRDet + OCRRec;

    29. OCRDet + OCRCls + OCRRec;

    30. yolov8n_CCPD;

    31. yolov8n_CCPD + OCRRec;

    32. yolov8n_CCPD + OCRCls + OCRRec.

  2. A command mechanism for model list, you can get the all the available models,combination of models and applications and so on, which showed above.

  3. Provide a sample demo for users to refer to, and they can directly run the sample app to verify the NN environment of C3V.

  4. Parallel operations in multi-model applications can maximize the utilization of NPU and CPU, ultimately maximizing the processing frame rate of the application.

  5. Implement official and customized partitions, you can copy an offical model to customized zone for further customizing, or just put your own model in the customized zone as a new model.

  6. Define some specified paths for some resource, for example, config, font, test image, model file, test video and so on.

  7. Define some specified folders such as botSortTrack, imageWriter, videoWriter for assist.

  8. Provide Libs and header files for users to integrate specific NN modules into their applications using the standard interfaces we provide.

  9. Provide COMPILE SH to enable users to easily compile SNNF and locate generated resources in the specified release directory.

  10. Open source the SNNF to facilitate users to better understand the internal operations of SNNF.

  11. Optimize the system to make it more robust, and after long-term testing, the system is stable.

Resource

Please get the V1.0.0 release resource here.

Before starting any work, please carefully read the instruction files such as readme.md in the document directory.

Usage of V1.0.0

How to verify Official Demos

You can use the script we provide to start as follows:

/SNNF/release # ./snnf_run.sh Usage: ./bin/snnf_nnsample [-m|-s|-a|-h] [-i|-v|option] Version: 1.0.0_ Time: [-m,--model <model>] run a single model <model>:Age Det10g HumanAttr LightFace OcrCls OcrDet OcrRec VehicleAttr W600kR50 Yolov5sDetection Yolov5sV1 Yolov5sV2 Yolov8nClassify Yolov8sClassify Yolov5sV3 BotSortTrackStgcn Rtmdets YoloV10sDetection YoloV8nCcpd YoloV8nDetectionBaseOpti YoloV8nDetectionOpti YoloV8nObbOpti YoloV8nPoseOpti YoloV8nSegmentOpti YoloV8sDetection YoloV8sDetectionBaseOpti YoloV8sDetectionOpti YoloV8sObb YoloV8sPose YoloV8sSegment example:./bin/snnf_nnsample -m Yolov5sDetection ./bin/snnf_nnsample --model HumanAttr [-s,--sequential <model1,model2,...>] run sequential models <models>:Yolov5sDetection,HumanAttr LightFace,Age OcrDet,OcrRec OcrDet,OcrCls,OcrRec YoloV8nCcpd,OcrRec Det10g,W600kR50 YoloV8sDetection,VehicleAttr YoloV8nDetectionOpti,BotSortTrack YoloV8nPoseOpti,BotSortTrackStgcn YoloV8nCcpd,OcrRec YoloV8nCcpd,OcrCls,OcrRec example:./bin/snnf_nnsample -s Yolov5s,HumanAttr ./bin/snnf_nnsample --sequential ocrDet,ocrCls,ocrRec ./bin/snnf_nnsample -s YoloV8nCcpd,OcrRec,imageWriter ./bin/snnf_nnsample -s YoloV8nDetectionOpti,BotSortTrack,videoWriter -v resource/video/humanCount.mp4 ./bin/snnf_nnsample -s YoloV8nPoseOpti,BotSortTrackStgcn,videoWriter -v resource/video/person-falling.mp4 [-i,--image file] set image file to nn detection. <file>: file name [-c | option]: test count, this parameter is only match with -i example:./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr -i filename -c testCount ./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr --image filename -c testCount [-v,--video file] set video file to nn detection. <file>: file name example:./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr -v filename ./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr --video filename [-a,--all] run all model testing assist tools: imageWriter videoWriter BotSortTrack

Release folder structure

image-20240930-084908.png
  • bin: nnf_nnsample. Prebuild sample programs that can run on the c3v Linux platform.

  • include:header file of NN framework SDK.

  • lib:libraries of NN framework SDK.

  • resource

    • config: some config files for features.

    • font: ttf file for plotting sample.

    • image: image files used for test.

    • model: models to be used in the sample program.

    • video: video files used for test.

  • samples:example code for using NN framework.

  • snnf_run.sh:executable script for running sample code.

  • thirdparty: just as its name implies.

How to run NN framework sample

  1. Copy the release foler to C3V Linux.

/SNNF/release # ls -alh total 36 drwxr-xr-x 8 xxx B400 4096 Sep 30 14:23 ./ drwxr-xr-x 15 xxx B400 4096 Sep 30 14:15 ../ drwxr-xr-x 2 xxx B400 4096 Sep 30 14:15 bin/ drwxr-xr-x 6 xxx B400 4096 Sep 30 14:15 include/ drwxr-xr-x 3 xxx B400 4096 Sep 30 14:15 lib/ drwxr-xr-x 7 xxx B400 4096 Sep 30 14:15 resource/ drwxr-xr-x 4 xxx B400 4096 Sep 30 14:15 samples/ -rwxr-xr-x 1 xxx B400 262 Sep 30 14:15 snnf_run.sh* drwxr-xr-x 7 xxx B400 4096 Sep 30 14:15 thirdparty/
  1. Run nnf_run.sh to run the NNF sample.

a. One-time input

./snnf_run.sh -m YoloV8sDetection

#./snnf_run.sh -m YoloV8sDetection 1727625905242|7fad06c020|T|common: [app]YoloV8sDetection in 1727625905261|7fad06c020|I|common: [nn]create model from pluginName: YoloV8sDetection takes: 17 1727625905722|7f96fdf0e0|I|common: [nn]picked: 5 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 35 196 158 403) --> label: 0(person), confidence: 0.89, fin: false 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 526 185 112 392) --> label: 0(person), confidence: 0.87, fin: false 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 173 203 97 360) --> label: 0(person), confidence: 0.86, fin: false 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 0 321 44 253) --> label: 0(person), confidence: 0.75, fin: false 1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 12 66 625 403) --> label: 5(bus), confidence: 0.74, fin: true 1727625905781|7fad06c020|T|common: [app]YoloV8sDetection out, retVal: 0

b. Read input from the image file

./snnf_run.sh -m YoloV8nDetectionOpti -i resource/image/person640x640.jpg

c. Read inputs from the video file.

./snnf_run.sh -m YoloV8nDetectionOpti -v resource/video/humanCount.mp4

d. Sequential models

./snnf_run.sh -s Yolov5sDetection,HumanAttr

e. Model inference results save to image.

./snnf_run.sh -s YoloV8sPose,imageWriter

Results will save to the image detected_1883_0931_1727627888712.jpg.

How to build SNNF

  1. Cross-compile for C3V environment.

a. Please use snnf_build.sh for SNNF compiling.

b. All the resource will installed to release folder.

  1. Copy release folder to the C3V platform.

  2. Setup environment variable.

a. Setting environment variables independently.

b. Run snnf_run.sh will auto set environment variables.

  1. Then, you can run snnf_run.sh for SNNF sample.

Models reference

Model Name

Version or Path

Yolov5s

https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt

Human Attributes

https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.zip

Light Face

Ultra-Light-Fast-Generic-Face-Detector-1MB/models/onnx/version-slim-320.onnx at master · Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

Optical character recognition

  • ch_PP-OCRv3_det_infer

  • ch_ppocr_mobile_v2.0_cls_infer

  • ch_PP-OCRv3_rec_infer

Age recognition

GitCode - 全球开发者的开源社区,开源代码托管平台 7c024d9d453c9b35a72a984d8821b5832ef17401

Yolov8 Detection

GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

Yolov8 Pose

GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

Yolov8 OBB

GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

Yolov8 Segmentation

GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

Yolov8 Classification

GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

Vehicle attributes

https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip

License plate recognition

CCPD2020

Yolov8 CCPD detection

OCR

Yolov10 Detection

GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection [NeurIPS 2024]

RTMDet

GitHub - open-mmlab/mmdetection: OpenMMLab Detection Toolbox and Benchmark

Face Recognition

GitHub - deepinsight/insightface: State-of-the-art 2D and 3D Face Analysis Project

Object tracking

BotSort

Falling Recognition

STGCN