V1.0.0 of SNNF
Target of the V1.0.0
This version is the first time, we formal release the SNNF(Sunplus Neural Network Framework), the original version is V1.0.0.
There are some release notes for the version which are as below:
There are some NN modules and Samples.
lightFace;
age;
lightFace + age;
det_10g;
det_10g + w600k_r50;
humanAttr;
yolov5s + humanAttr;
vehicleAttr;
yolov8s_detection + vehicleAttr;
yolov8s_detection;
yolov8s_obb;
yolov8s_pose;
yolov8s_segment;
yolov8s_classify;
yolov10s_detection;
yolov8n_obb_opti;
yolov8n_pose_opti;
yolov8n_segment_opti;
yolov8n_detection_opti;
yolov8n_classify;
RTMDet-s;
Human tracking;
Human falling detection;
yolov5s_detection;
OCRDet;
OCRCls;
OCRRec;
OCRDet + OCRRec;
OCRDet + OCRCls + OCRRec;
yolov8n_CCPD;
yolov8n_CCPD + OCRRec;
yolov8n_CCPD + OCRCls + OCRRec.
A command mechanism for model list, you can get the all the available models,combination of models and applications and so on, which showed above.
Provide a sample demo for users to refer to, and they can directly run the sample app to verify the NN environment of C3V.
Parallel operations in multi-model applications can maximize the utilization of NPU and CPU, ultimately maximizing the processing frame rate of the application.
Implement official and customized partitions, you can copy an offical model to customized zone for further customizing, or just put your own model in the customized zone as a new model.
Define some specified paths for some resource, for example, config, font, test image, model file, test video and so on.
Define some specified folders such as botSortTrack, imageWriter, videoWriter for assist.
Provide Libs and header files for users to integrate specific NN modules into their applications using the standard interfaces we provide.
Provide COMPILE SH to enable users to easily compile SNNF and locate generated resources in the specified release directory.
Open source the SNNF to facilitate users to better understand the internal operations of SNNF.
Optimize the system to make it more robust, and after long-term testing, the system is stable.
Resource
Please get the V1.0.0 release resource here.
Before starting any work, please carefully read the instruction files such as readme.md in the document directory.
Usage of V1.0.0
How to verify Official Demos
You can use the script we provide to start as follows:
/SNNF/release # ./snnf_run.sh
Usage: ./bin/snnf_nnsample [-m|-s|-a|-h] [-i|-v|option]
Version: 1.0.0_
Time:
[-m,--model <model>] run a single model
<model>:Age Det10g HumanAttr
LightFace OcrCls OcrDet
OcrRec VehicleAttr W600kR50
Yolov5sDetection Yolov5sV1 Yolov5sV2
Yolov8nClassify Yolov8sClassify Yolov5sV3
BotSortTrackStgcn Rtmdets YoloV10sDetection
YoloV8nCcpd YoloV8nDetectionBaseOpti YoloV8nDetectionOpti
YoloV8nObbOpti YoloV8nPoseOpti YoloV8nSegmentOpti
YoloV8sDetection YoloV8sDetectionBaseOpti YoloV8sDetectionOpti
YoloV8sObb YoloV8sPose YoloV8sSegment
example:./bin/snnf_nnsample -m Yolov5sDetection
./bin/snnf_nnsample --model HumanAttr
[-s,--sequential <model1,model2,...>] run sequential models
<models>:Yolov5sDetection,HumanAttr
LightFace,Age
OcrDet,OcrRec
OcrDet,OcrCls,OcrRec
YoloV8nCcpd,OcrRec
Det10g,W600kR50
YoloV8sDetection,VehicleAttr
YoloV8nDetectionOpti,BotSortTrack
YoloV8nPoseOpti,BotSortTrackStgcn
YoloV8nCcpd,OcrRec
YoloV8nCcpd,OcrCls,OcrRec
example:./bin/snnf_nnsample -s Yolov5s,HumanAttr
./bin/snnf_nnsample --sequential ocrDet,ocrCls,ocrRec
./bin/snnf_nnsample -s YoloV8nCcpd,OcrRec,imageWriter
./bin/snnf_nnsample -s YoloV8nDetectionOpti,BotSortTrack,videoWriter -v resource/video/humanCount.mp4
./bin/snnf_nnsample -s YoloV8nPoseOpti,BotSortTrackStgcn,videoWriter -v resource/video/person-falling.mp4
[-i,--image file] set image file to nn detection.
<file>: file name
[-c | option]: test count, this parameter is only match with -i
example:./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr -i filename -c testCount
./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr --image filename -c testCount
[-v,--video file] set video file to nn detection.
<file>: file name
example:./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr -v filename
./bin/snnf_nnsample -s Yolov5sDetection,HumanAttr --video filename
[-a,--all] run all model testing
assist tools: imageWriter videoWriter BotSortTrack
Release folder structure
bin: nnf_nnsample. Prebuild sample programs that can run on the c3v Linux platform.
include:header file of NN framework SDK.
lib:libraries of NN framework SDK.
resource
config: some config files for features.
font: ttf file for plotting sample.
image: image files used for test.
model: models to be used in the sample program.
video: video files used for test.
samples:example code for using NN framework.
snnf_run.sh:executable script for running sample code.
thirdparty: just as its name implies.
How to run NN framework sample
Copy the release foler to C3V Linux.
/SNNF/release # ls -alh
total 36
drwxr-xr-x 8 xxx B400 4096 Sep 30 14:23 ./
drwxr-xr-x 15 xxx B400 4096 Sep 30 14:15 ../
drwxr-xr-x 2 xxx B400 4096 Sep 30 14:15 bin/
drwxr-xr-x 6 xxx B400 4096 Sep 30 14:15 include/
drwxr-xr-x 3 xxx B400 4096 Sep 30 14:15 lib/
drwxr-xr-x 7 xxx B400 4096 Sep 30 14:15 resource/
drwxr-xr-x 4 xxx B400 4096 Sep 30 14:15 samples/
-rwxr-xr-x 1 xxx B400 262 Sep 30 14:15 snnf_run.sh*
drwxr-xr-x 7 xxx B400 4096 Sep 30 14:15 thirdparty/
Run nnf_run.sh to run the NNF sample.
a. One-time input
./snnf_run.sh -m YoloV8sDetection
#./snnf_run.sh -m YoloV8sDetection
1727625905242|7fad06c020|T|common: [app]YoloV8sDetection in
1727625905261|7fad06c020|I|common: [nn]create model from pluginName: YoloV8sDetection takes: 17
1727625905722|7f96fdf0e0|I|common: [nn]picked: 5
1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 35 196 158 403) --> label: 0(person), confidence: 0.89, fin: false
1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 526 185 112 392) --> label: 0(person), confidence: 0.87, fin: false
1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 173 203 97 360) --> label: 0(person), confidence: 0.86, fin: false
1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 0 321 44 253) --> label: 0(person), confidence: 0.75, fin: false
1727625905722|7f96fdf0e0|T|common: [app]GeneralModelOutputListener detect from resource/image/objectDetect.jpg, the result: (box: 12 66 625 403) --> label: 5(bus), confidence: 0.74, fin: true
1727625905781|7fad06c020|T|common: [app]YoloV8sDetection out, retVal: 0
b. Read input from the image file
./snnf_run.sh -m YoloV8nDetectionOpti -i resource/image/person640x640.jpg
c. Read inputs from the video file.
./snnf_run.sh -m YoloV8nDetectionOpti -v resource/video/humanCount.mp4
d. Sequential models
./snnf_run.sh -s Yolov5sDetection,HumanAttr
e. Model inference results save to image.
./snnf_run.sh -s YoloV8sPose,imageWriter
Results will save to the image detected_1883_0931_1727627888712.jpg
.
How to build SNNF
Cross-compile for C3V environment.
a. Please use snnf_build.sh
for SNNF compiling.
b. All the resource will installed to release folder.
Copy release folder to the C3V platform.
Setup environment variable.
a. Setting environment variables independently.
b. Run snnf_run.sh
will auto set environment variables.
Then, you can run snnf_run.sh for SNNF sample.
Models reference