Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 80 Next »

Disclaimer

Sunplus makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions without prior notice.

Except as set forth in the written supply agreement signed between your company and Sunplus, Sunplus assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or non-infringement.

Sunplus requests that your company shall abide by and adhere to all international, regional, national, federal, state, and local laws, regulations, codes, governmental or judicial orders, and international conventions, including but not limited to civil codes, copyright laws and regulations, laws protecting the reputation, credit, privacy or portrait right of an individual or entity, that are applicable to any use or application of Sunplus' products or any use, application, promotion, marketing or otherwise dispose of the devices, products, apparatus, instruments, equipment or machines containing or incorporating Sunplus' products.

Your company shall well assess the risk with regard to any use or applications incorporating, integrating or relating to Sunplus' products (the “Applications”). Sunplus shall have no liability for any claims, damages, losses, costs and/or expenses arising from or in connection with any and all Applications, such Applications include, but are not limited to: any and all devices, systems or equipment for surgical or medical implementation, operation or maintenance; automotive implementation, operation; drone; airplane or spaceship instruments; transportation instruments; navigation or communication of aircraft or ground support equipment; traffic signal instruments; or in application where the failure of the Sunplus' products could create a situation where personal injury, death or severe property or environmental damage may occur; or any other applications where the Sunplus' products are incorporated, integrated or embedded. Your company’s use and apply of Sunplus' products or any products containing or integrating Sunplus' products in any and all Applications will do so at their own risk.

Table of Contents

1. Introduction

SP7350 (C3V) is a versatile chip engineered to provide robust computing power tailored for artificial intelligence applications, particularly those focused on vision processing. With its rich array of peripherals, it can operate effectively as a standalone product, such as in a sweeping robot. Additionally, it seamlessly integrates with other peripheral ICs (P-Chips) via Sunplus' unique Multi-Function Interface (MFI), enabling a diverse range of AI on Chip solutions.

image-20240417-062648.png

Standing as a sophisticated System-on-Chip (SOC), SP7350 features a versatile CPU and Neural Processing Unit (NPU) meticulously tailored for edge and AI computing tasks. With a formidable 4.5 TOPS AI processor and quad-core 1.8GHz ARM Cortex A55 CPU, SP7350 adeptly handles a wide range of edge AI and AIoT applications necessitating the processing of computer vision, video, image, audio, and more. Additionally, SP7350 integrates an ARM Cortex M4 Microcontroller Unit (MCU) to support machine control and peripheral Input/Output (IO). The MCU operates within an independent power domain, ensuring its functionality even when other function blocks are powered off.

SP7350 provides flexible interfacing and networking capabilities. USB3.1 DRD and USB2.0 OTG support both host and device functions, allowing SP7350 to serve as the central unit of a system or a dedicated processor within a device. Up to four MIPI CSI RX interfaces enable the connection of multiple cameras for applications like AMR/AGV or surveillance. An MIPI CSI/DSI TX interface empowers SP7350 to function as a camera controller or to output content to displays. For high-speed networking, SP7350 includes IEEE1588 GMAC, supporting 10/100/1000 Mbps Ethernet with an external PHY. Moreover, SP7350 features an on-chip H.264/JPEG codec, enabling efficient video/audio transmission suitable for consumer electronics or surveillance applications.

The MFI serves as a crucial component, facilitating high-speed data transmission between high- and low-processing chips via the CPU BUS. It can be programmed as a MIPI RX interface for MIPI cameras, with features such as automatic pin detection, signal switching, and error detection ensuring seamless and user-friendly connectivity.

Typical AI Processing tasks include motion-compensated processing, object detection, tracking, segmentation, face detection, and pose detection. SP7350 finds applications in various fields, including robotics, drones, AMR/AGV, surveillance, inspection, counting, people tracking, human interface for gaming/touch-less control, online meetings, and more.

Manufactured utilizing advanced 12nm chip technology, SP7350 offers the benefits of a small form factor and low power consumption, essential for constructing compact and energy-efficient devices.

2. Features

  • CPU: Quad ARM Cortex-A55

    • 1.8 GHz (2.1 GHz for specific components)

    • Cache

      • L1 Cache: 32kB I-cache / 32kB D-cache

      • L2 Cache: 128kB

      • L3 Cache: 1MB

    • Support NEON advance SIMD architecture & Floating-point

    • Support DVFS

      • 0.5GHz ~1.5GHz @0.8V 85°C

      • 1.5GHz ~1.8GHz @TT 0.84V 85°C

      • 1.5GHz ~1.8GHz @SS 0.94V 85°C

    • Support individual core power down

    • Support 2/4 core configurable by e-fuse (OTP)

    • Support maximum frequency limited by e-fuse (OTP)

      • Maximum limited to 1.5GHz, 1.8GHz, and 2.1 GHz

    • Support Coresight debug solution

      • JTAG interface

      • CTI and PMU

      • ETB: 1k to 4k bytes buffer size per core

  • NPU: AI and Parallel Processing Engine

    • Verisilicon VIP9000DI, with 256kB SRAM

    • Up to 4.5 TOPS (@900MHz) computing power

    • Support configurable operating frequency

    • Support indivudual controllable power domain.

    • Support OpenCL and OpenVX with Neural Network Extension

  • MCU: ARM Cortex-M4

    • Support FPU

    • Support 400MHz, 200MHz, 100MHz and 25MHz

    • Support JTAG and SWD interface

  • DDR SDRAM

    • LPDDR4-3200, DDR4-3200, LPDDR3/DDR3/DDR3L-1866

    • 2 channels, 16 bits per channel

    • Up to 8GB memory capacity

    • Support IO retention

  • Internal SRAM

    • 256kB at main power domain

    • 384kB at CM4 (AO) power domain

      • For CM4 operation and DRAM IO retention data

  • AXI DMA

    • Support 16 channels

    • Support memory-to-memory copy

    • Support hardware handshake for 8-bit NAND controller

  • AHB DMA

    • Support 16 channels

    • Support memory-to-memory copy

    • Support hardware handshake for I2C and SPI controllers

  • Boot Devices

    • eMMC devicce

      • Support both 1.8V and 3.3V IOVDD

      • Support SDR up to 200 MHz (only for IOVDD = 1.8V)

      • Support DDR up to 160 MHz (only for IOVDD = 1.8V)

    • SD card

      • Support SD 3.0

      • Support SDR up to 200MHz

    • SPI-NAND flash

      • Support SLC NAND only

      • Support up to 150Mz (only for 1.8V)

      • Support 1 or 2 planes 2k page-size dice

      • Support 1 plane 4k page-size dice

    • 8-bit NAND flash

      • Support 1.8V and 3.3V

      • Support 2k/4k/8 page-size dice

      • Support synchronous mode

    • SPI-NOR flash

      • Support 1/2/4-bit mode

      • Support 1.8V and 3.3V

      • Support up to 100Mz (only for 1.8V)

  • In-system Programming for Flash Devices

    • eMMC, SPI-NAND, 8-bit NAND, and SPI-NOR

    • In-system programming through USB flash drives or SD cards

  • Security

    • Support AES-128/192/256 encryption and decryption ECB, CBC, CTR mode

    • Support RSA

      • 256/512/1024/2048 bits encryption

      • modular exponentiation

    • Support HASH

      • SHA-2 256/512

      • SHA-3 224/256/384/512

      • MD5

    • GHASH for AES GCM mode

    • Support POLY 1305

    • Support Pseudo RNG

    • Support ARM TZC-400

    • Support secure boot

  • SDIO

    • Support SD 3.0

    • Support transfer rate up to 104MB/s (UHS-1)

  • Video and image codec

    • H.264/MVC, VP8 and JPEG encoding

    • H.264/SVC and JPEG decoding

    • Individual controllable power domain.

  • USB3.1 (Gen. 1) Interface

    • Compliant to USB 3.1 Gen1 with DRD

    • Data rate up to 5Gbps

    • Integrated PHY

    • Support 4 sets of end-points (1 control and 3 data)

  • USB2.0 Interface

    • Compliant to USB 2.0

    • Support OTG 1.0

    • Support High, Full and Low speeds

      • 4 in: 3 bulk/interrupt; 1 bulk/interrupt/isochronous

      • 4 out: bulk/interrupt; 1 bulk/interrupt/isochronous

  • MIPI CSI RX

    • 1 MIPI-CSI2 RX 4D1C (1.5 Gbps per lane), support 4 virtual channel

    • 1 MIPI-CSI2 RX 2D1C (1.5 Gbps per lane), support 2 virtual channel

    • 2 MIPI-CSI2 RX 2D1C (1.5 Gbps per lane), support 2 virtual channel

      • Shared pins with CPIO (when CPIO disable, MIPI CSI RX enable)

      • 2 MIPI-CSI2 RX can be combined as 1 MIPI-CSI2 RX 4D1C, support 4 virtual channel

    • Max resolution: 2688x1944

  • MIPI CSI/DSI TX

    • One MIPI TX output for either CSI or DSI

    • 4 lanes with 1.5Gbps per lane

    • DSI TX resolution up to 1920x1080

    • CSI TX resolution up to 3840x2880

  • Audio Interfaces

    • One bidirectional I2S

    • Two unidirectional I2S

    • One 16-channel TDM

    • Configurable serial clock frequency

    • Support 16 bit audio format

    • Support both master and slave mode

    • Compliant with the IIS/PCM standard

  • Ethernet Controller

    • Support 10/100/1000 Mbps data rate

    • Support RGMII and RMII interface (1.8V)

    • Support IEEE1588

  • ADC

    • 12-bit SAR ADC with 4-channel

    • Sampling rate up to 1MHz

  • PWM

    • Support 12 bits resolution

    • Support pre-scaling factor from 1 to 512

  • Real-Time-Clock (RTC)

    • Independent Always-On power domain

    • 64 bits free-run timer with 32.768 kHz clock input

  • SPI/I2C/UART

    • Up to seven UART interfaces

    • Up to six SPI interfaces (5 master, and 1 slave)

    • Up to ten I2C interfaces

  • GPIO

    • Support total 106 GPIOs

    • Support software programmable driving strength for all GPIOs

    • Support 60 GPIOs with 1.8V/3.3V capability

      • 3 groups in AO-power domain

      • 2 groups in main-power domain

  • Watchdog Timer

    • 32-bit counter

    • Up to 223 second

  • Mailbox

    • For inter-processor communication between CA55 and CM4

  • RTC

    • 32.768 kHz crystal

  • Semaphore

    • Support read lock and write unlock

    • Support 16 channels

  • Thermal Sensor

    • Placed at between CPU and NPU

    • Support two threshold temperatures (default disable)

      • Alarm threshold, interrupt to CPU

      • Shutdown threshold, for resetting all system

  • Multi-Function Interface (MFI) and CPIO

    • Selectable proprietary CPIO and MIPI CSI-RX interfaces

    • CPIO interface

      • Supports 4 data lanes for both TX and RX, provides 1.0 GiB/s bandwidth

      • Support hardware auto calibration

      • Support hardware auto and/or software programmable SWAP and CROSSOVER modes

      • Support data swap

  • Package: 15x15mm2 FCCSP

3. Power Domains

The SP7350 architecture comprises six distinct power domains, each with its dedicated power supply that can be independently activated or deactivated. Illustrated in the figure below, these domains are: RTC, CM4 (AO), CA55, NPU, Video codec, and Main power domains.

image-20240417-062854.png

3.1 RTC Power Domain

The RTC power domain is typically powered by either a battery or a super capacitor. Its primary component is the real-time clock (RTC), which remains powered continuously to ensure uninterrupted operation. The RTC is driven by a 32.768 kHz crystal oscillator. Additionally, this domain includes circuitry for wake-up key detection. When the wake-up key is pressed for one second, activating the CM4_WAKEUP_KEY signal to HIGH, it triggers the enablement of power to the CM4 domain.

3.2 CM4 Power Domain

The CM4 power domain, also known as the Always On (AO) power domain, remains powered continuously, facilitating the operation of CM4 and its peripherals even when other domains like CA55 and the Main-power domain are powered down. Primarily, it manages the power flow for the CA55 and Main-power domains. CM4 possesses the capability to access all devices and peripherals within the Main-power domain even in the absence of power to the CA55.

In the current implementation, during normal operation, pressing the wake-up key for one second prompts CM4 to instruct Linux and CA55 to enter the suspend-to-RAM state (STR). While in STR state, pressing the wake-up key for 0.3 seconds triggers CM4 to instruct CA55 to restore to normal operational status.

3.3 CA55 Power Domain

The CA55 power domain encompasses four Cortex A55 cores along with their L1, L2, and L3 caches. It supports Dynamic Voltage and Frequency Scaling (DVFS). The entire CA55 cluster can be powered down, and each core within CA55 can be individually deactivated. Given that CA55 is connected to the AXI bus in the Main-power domain, its operation necessitates the activation of the Main-power domain.

3.4 Main-power Domain

The Main-power domain hosts the majority of the devices and peripherals within the SP7350 system. All components within this domain are interconnected via three AXI buses. Notably, while the DDR SDRAM controller and PHY reside in the Main-power domain, the IO buffer of the PHY and DDR SDRAM chip are positioned in the CM4 power domain. This configuration ensures that the SDRAM remains in a retention state when the Main-power domain is powered off.

3.5 NPU Power Domain

The NPU's power can be individually toggled off when not in use. However, given its connection to the AXI bus in the Main-power domain, operating the NPU requires the Main-power domain to be activated.

3.6 Video-codec Power Domain

Similar to the NPU, the power supply to the video codec can be individually deactivated when not in use. Nevertheless, the video codec's operation necessitates the activation of the Main-power domain due to its connection to the AXI bus within that domain.

4. CPU, MCU, NPU and DRAM Interface

4.1 CPU

The CPU consists of a quad-core ARM Cortex-A55 architecture, featuring a floating-point unit (FPU) and NEON™ SIMD processing. Clock rates can reach up to 1.8GHz, with support for dynamic frequency scaling to optimize energy consumption. Cache memory comprises 32KB L1 I-cache, 32KB L1 D-cache, 128KB L2 cache, and 1MB L3 cache. TrustZone™ technology enhances security capabilities.

4.2 MCU

The MCU core is based on the ARM Cortex-M4 architecture, equipped with a floating-point unit. Operating at clock rates of 25MHz, 100MHz, 200MHz, and 400MHz, the MCU features an independent on-chip power domain. This allows the MCU to remain operational even when other chip power domains are shut off, enabling the implementation of deep-sleep mode. When CPUs return from deep sleep, DRAM must be configured in self-retention mode to maintain the previous state.

4.3 NPU

The NPU operates at clock rates of up to 900 MHz, delivering computing performance of up to 4.5 TOPS (Trillion Operations Per Second). Optimized for AI models based on convolutional neural networks, it includes a Parallel Processing Unit (PPU) with 32-bit floating-point pipelining and threading. For software development in parallel computing and video computing, both OpenCL and OpenVX are supported. The NPU resides in an independent power domain, allowing individual power-down control.

4.4 DRAM Interface

The supported types of DRAM include:

  • LPDDR4 and DDR4, with speeds up to 3200 MT/s

  • LPDDR3, DDR3L and DDR3, with speeds up to 1866 MT/s

The DRAM interface provides two channels with a 16-bit width for each channel. It supports up to 4GB DRAM chips, with a maximum total capacity of 8GB. To facilitate system suspending, the DRAM includes a self-refresh function for data retention when the chip core is powered down.

5. Boot Devices and In-System Programming

5.1 Boot Devices

The SP7350 (CPU) can be booted from various storage devices, including eMMC device, SD card, SPI-NAND, SPI-NOR, or 8-bit NAND flash.

Boot-up Source

MX6

MX5

MX4

MX3

MX2

eMMC

1

1

1

1

1

SPI-NAND

1

1

1

0

1

USB drive ISP

1

1

0

1

1

SD card boot or ISP

1

1

0

0

1

SPI-NOR boot

1

0

1

1

1

8-bit NAND boot

1

0

0

0

1

5.2 In-System Programming (ISP)

System code can be programmed using either a USB flash drive connected to USB2 or USB3, or through an SD card.

6. USB Interfaces

6.1 USB 3.1 Gen 1 DRD

The USB3 interface is compliant to USB 3.1 Gen 1 standard with data rate of 5Gbps and supporting Dual-Role Device (DRD). USB 3.0 Dual-Role Data (USB3 DRD) enables a USB device to act as both a host and a peripheral device. This capability is also known as USB On-The-Go (USB OTG) in the context of USB 2.0.

With USB3 DRD, a device can dynamically switch between host and peripheral modes, allowing for more flexible and versatile usage scenarios. For example, a smartphone equipped with USB3 DRD can act as a USB host when connecting to USB peripherals like keyboards or flash drives, but can also function as a peripheral device when connected to a computer for data transfer.

When USB3 interface is operating in device mode, up to three endpoints can be configured as Interrupt, Bulk or Isochronous modes. These endpoints are also configurable as either input or output. The Control endpoint is fixed at endpoint number 0.

Endpoint #

Endpoint Type

Direction

Max Packet

Size (Byte)

Double

Buffer

0

Control only

In / Out

512

 X

1

Bulk, INT or ISO

In / Out

 1024

 √

2

Bulk, INT or ISO

In / Out

 1024

 √

3

Bulk, INT or ISO

In / Out

 1024

 √

Note: All output endpoints share a buffer, while each input endpoint has its own input buffer.

6.2 USB 2.0 OTG

USB 2.0 supports both High-speed, Full-speed and Low-speed transfers and is compatible with both host and device configurations. USB On-The-Go (OTG) extends the capabilities of USB 2.0 by enabling devices to dynamically switch between host and peripheral roles as needed. Note that SP7350 only supports SRP and HNP, and does not supports ADP.

In device mode, USB 2.0 interfaces provide endpoint configuration options outlined in the table below. Besides the Control endpoint, users can configure up to four IN and four OUT endpoints for Bulk, Interrupt, or Isochronous data transfers. It's important to note:

  • One of the endpoints 1, 2, 3, and 4 can be configured for Isochronous mode, while the others can be configured as Bulk or Interrupt mode.

  • Similarly, one of the endpoints 5, 6, 7, and 8 can be configured for Isochronous mode, while the remaining endpoints can be configured for Bulk or Interrupt mode.

Here's the breakdown:

Endpoint #

Direction

Endpoint Type

0

In / Out

Control

1

In

INT or Bulk or ISO

2

In

INT or Bulk or ISO

3

In

INT or Bulk or ISO

4

In

INT or Bulk or ISO

5

Out

INT or Bulk or ISO

6

Out

INT or Bulk or ISO

7

Out

INT or Bulk or ISO

8

Out

INT or Bulk or ISO

This breakdown illustrates the available options for configuring USB 2.0 endpoints.

7. Ethernet Controller

The Ethernet Media Access Controller (MAC) is a crucial component in networking systems, facilitating high-speed data transfer. It supports transfer rates of 10/100/1000 Mbps and interfaces with external transceivers (PHY) to establish Ethernet connectivity.

7.1 Register Configuration

The GMAC_PHYSEL (0xF88001DC[12]) register and CLKGEN_GMACPHY_SEL[1:0] (0xF88001DC [11:10]) register dictate the interface mode and corresponding TXC clock frequency. Proper configuration of the GMAC_PHYSEL and CLKGEN_GMACPHY_SEL registers is essential for ensuring optimal performance in each operating mode. Here's a breakdown of the configurations:

GMAC_PHYSEL

CLKGEN_GMACPHY_SEL[1:0]

Operation Mode

TXC clock

0

x0

RGMII 1000Mbps

125 MHz

0

01

RGMII 100Mbps

25 MHz

0

11

RGMII 10Mbps

2.5 MHz

1

x0

N/A

-

1

01

RMII 100Mbps

50 MHz

1

11

RMII 10Mbps

50 MHz

7.2 Pin Connections

The following table illustrates the pin connections for both RGMII (GMAC_PHYSEL = 0) and RMII (GMAC_PHYSEL = 1) interfaces. It's important to note that SP7350 only supports 1.8V PHY, regardless of the selected interface type.

Ball Name

RGMII

 RMII

G_MX3

PHY_RXC

G_MX4

PHY_RXDV

PHY_CRS_DV

G_MX5

PHY_RXD0

PHY_RXD0

G_MX6

PHY_RXD1

PHY_RXD1

G_MX7

PHY_TXD0

PHY_TXD0

G_MX8

PHY_TXD1

PHY_TXD1

G_MX9

RGMII_MDC

RMII_MDC

G_MX10

PHY_TXC

PHY_REF_CLK

G_MX11

PHY_TXEN

PHY_TXEN

G_MX12

RGMII_MDIO

RMII_MDIO

G_MX13

PHY_RXD2

 

G_MX14

PHY_RXD3

 

G_MX15

PHY_TXD2

 

G_MX16

PHY_TXD3

 

Understanding and correctly implementing these configurations ensure seamless operation and optimal performance of the Ethernet MAC interface.

8. MIPI Interfaces and Display

8.1 MIPI CSI RX

The SP7350 boasts six MIPI CSI RX channels, although two are not accessible in this package configuration. The MIPI RX0, RX1, RX2, RX3, and RX4 channels support 2 data lanes (2D1C) each with 2 virtual channels. Additionally, the MIPI RX5 channel accommodates 4 data lanes (4D1C) with 4 virtual channels. It's noteworthy that MIPI RX2 can be adapted to support 4 data lanes (4D1C) with 4 virtual channels if MIPI RX3 remains unused. MIPI RX0 and RX1 are not accessible in this particular package variant.

Each data lane supports transmission speeds of up to 1.5 Gbps, offering a maximum resolution of 2688x1944. Refer to the table below for a comprehensive overview of all available channels.

Channel

Data Lane #

Virtual Channel #

Remarks

RX0

2

2

Not available in this package

RX1

2

2

Not available in this package

RX2

2

2

RX3

2

2

Not available for version A chips.

RX4

2

2

RX5

4

4

It's important to note that RX2 and RX3 share pins with the CPIO interface. Therefore, only one of RX2/RX3 or the CPIO interface can be active at any given time.

8.2 MIPI CSI/DSI TX

One MIPI TX output port that can be configured as CSI for camera output or DSI for display output. This interface provides 4-lane with data rate of 1.5Gbps per lane.

8.2.1 MIPI DSI TX

  • Support data format: RGB888, RGB666 with 18bit, RGB666 with 24bit, RGB565

  • Maximum resolution: 1920x1080

8.2.2 MIPI CSI TX

  • Support data format: YUY2, RGB888, RGB565, YUY2-10

  • Maximum resolution: 3840x2880

  • Image transfer from DRAM can support QoS

8.3 Display Engine

Display engine features:

  • 4-Layer OSD

  • Data format support: RGBA8888, RGB565, YUY2, 256 colors

  • Maximum source resolution is 1920x1080

  • 1 layer image, DRAM fetch format supports NV12, NV16 and YUV444.

  • Support scaling up and down

  • Maximum source resolution: 3840x2880

  • Mixing Function

  • Support 5 path mixing, Blending, Transparent, Opacity, Alpha Adjustment

  • Support Gamma, 888 to 666 Dither, 888 to 565 Dither

9. Image and Video Codec

9.1 Video and JPEG Decoder

The decoder support real-time H.264/SVC and JPEG decoding.

H.264 decoding features:

  • Maximum frame rate up to 60fps in 1080P resolution

  • Video resolution from 48x48 to 1920x1920 with 16-pixel step size

  • Baseline, main and high profiles

  • Output color format: YCbCr420, YCbCr 400 (monochrome)

  • Error detection and error concealment

JPEG decoding features:

  • Maximum resolution 16368 x 16368 (256M pixels)

  • Maximum pixel rate up to 76M pixels per second for real-time decoding

  • Output JFIF color formats: YCbCr 4:0:0, 4:2:0, 4:2:2, 4:4:0, 4:1:1 and 4:4:4

  • Error detection

Video post-processor features:

  • Input format: YCbCr 420, YCbYCr422, YCrCb422, CbYCrY 422 and CrYCbY 422

  • Output format: YCbCr420, YCbYCr422, YCrYCb422, CbYCrY422 and CrYCbY 422

  • Input image size up to 16.7M pixels with max width of 8176 and max height of 8176. Step size is 16 pixels.

  • Output image size up to 4096x4096 with step sizes of 8 pixels horizontally and 2 pixels vertically

  • Image up and down scaling

  • YCbCr to RGB conversion

  • 2x2 ordered spatial dithering

  • Alpha channel and alpha blending

  • Image cropping and digital zoom for JPEG and video stand-alone mode

  • Picture in picture

  • Image 90/180/270 degrees rotation and horizontal/vertical flip

9.2 Video and JPEG Encoder

The encoder provides real-time H.264/MVC, VP8 and JPEG encoding.

H.264/MVC/VP8 encoding features:

  • H.264 baseline, main and high profiles

  • Input color format: YCbCr420, YCrCb420, YCbYCr 422, CbYCrY422

  • Video size up to 1920x1920 with step size of 4 pixels

  • Maximum frame rate: 1080P@30FPS for VP8 and 1080P@60FPS for H.264

  • Bit rate from 10kbps to 40 Mbps for1080P@60FPS

JPEG encoding features:

  • Support baseline

  • Input color formats: YCbCr 420 and YCrCb420, YCbYCr422, CbYCrY422

  • Maximum resolution 8176x8176 with step size of 4 pixels

  • Maximum pixel rate up to 90M pixels per second for real-time processing

Pre-processor features:

  • Color space conversion from YCbCr422 to YCbCr 420

  • Maximum input resolution up to 8192x8192

  • Image cropping

  • Down-scaling

  • Rotation by 90 or 270 degree

10. Audio Interface

The audio interface of our system comprises one bidirectional and two unidirectional I2S interfaces. Each interface supports 2-channel (L/R) operation and can function in either master or slave mode, with configurable clock frequency and LRCK polarity.

Within the chip, the I2S interfaces are situated in the Always-On power domain and are connected to the CM4 sub-system. They possess the capability to issue a wakeup signal to activate either the CM4 or CA55 processor cores.

10.1 Channel 0

Channel 0 is equipped with a bidirectional I2S interface, featuring the following signal specifications:

Signal Name

Pins of X1 Position

Pins of X2 Position

Type

Config Bits

Remarks

AU_BCK

AO_MX44

AO_MX22

I/O

G1.6[1:0]

Bit clock

AU_LRCK

AO_MX45

AO_MX23

I/O

LR clock

ADC_DATA0

AO_MX46

AO_MX24

I

DATA in

AU_DATA0

AO_MX47

AO_MX25

O

DATA out

10.2 Channel 1

Channel 1 supports either input or output I2S interface, with the following signal specifications:

Signal Name

Pins

Type

Config

Remarks

AU1_BCK

AO_MX06

I/O

G1.5[15]

Bit clock

AU1_LRCK

AO_MX07

I/O

LR clock

ADC1_DATA0

AO_MX08

I

G1.6[3]

DATA in

AU1_DATA0

O

G1.5[13]

DATA out

10.3 Channel 2

Channel 2 also supports either input or output I2S interface, with the following signal specifications:

Signal Name

Pins

Type

Config Bits

Remarks

AU2_BCK

AO_MX30

I/O

G1.5[14]

Bit clock

AU2_LRCK

AO_MX31

I/O

LR clock

ADC2_DATA0

AO_MX32

I

G1.6[2]

DATA in

AU2_DATA0

O

G1.5[12]

DATA out

10.4 Clock for external ADC or DAC

Two clock signals are provided for external audio ADC or DAC devices:

Signal Name

Pins

Type

Config Bits

Remarks

EXT_DAC_XCK1

AO_MX21

O

G1.5[10]

external clock out 1

EXT_DAC_XCK

AO_MX33

O

G1.5[11]

external clock out

10.5 TDM

The TDM interface supports 6 channels for both input and output, with the following signal specifications:

Signal Name

Pins

Type

Config Bits

Remarks

TDMTX_XCK

AO_MX43

O

G1.5[9]

TDM clock out

TDMTX_BCK

AO_MX44

I/O

G1.6[4]

Bit clock

TDMTX_SYNC

AO_MX45

I/O

Sync

TDMRX_DATA16

AO_MX46

I

DATA in

TDMTX_DATA16

AO_MX47

O

DATA out

10.6 SPDIF

A single-channel input or output is provided for debug use through the SPDIF interface:

Signal Name

X1

X2

X3

X4

X5

X6

Type

Config Bits

Remarks

AUD_IEC0_RX

AO_MX41

AO_MX3

AO_MX4

AO_MX5

AO_MX12

AO_MX2

I

G1.6[7:5]

input

AUD_IEC0_TX

O

G1.6[10:8]

output

11. Analog-Digital Converter

The SP7350 is equipped with a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC), multiplexed across four channels. With a rapid sampling rate of up to 1MHz, this ADC delivers swift and efficient data acquisition capabilities. Its broad input range, from 0 to 1.8 volts (as powered by SAR12B_AVDD18), ensures seamless compatibility with an extensive array of input signals and diverse applications.

12. UART, SPI and I2C

The SP7350 offers a versatile array of interfacing functions, allowing users to configure up to 106 I/O ports for various purposes such as UART, SPI, I2C, SDIO, Ethernet PHY, audio, PWM, and more. In this section, we delve into the functionalities of UART, SPI, and I2C, highlighting their capabilities and configurations.

The UART, SPI, and I2C interfaces, with the exception of UADBG, reside within the Always-On power domain. This design ensures that even when the main power domain is inactive, these interfaces remain operational with the CM4 microcontroller.

12.1 UART

The SP7350 supports up to seven UART ports, boasting a maximum baud rate of 4 Mbps. Ports 1 and 2 feature hardware flow control for enhanced communication reliability. Additionally, the UADBG port is reserved for chip debugging purposes, featuring connectivity to the internal AXI bus through a specialized secure protocol.

Channel

FIFO Size

Signals

Pins of Position X1

Pins of Position X2

UART0

128 bytes

UA0_TXD

AO_MX0

AO_MX18

UA0_RXD

AO_MX1

AO_MX19

UART1

256 bytes

UA1_TXD

AO_MX2

AO_MX14

UA1_RXD

AO_MX3

AO_MX15

UA1_RTS_B

AO_MX4

AO_MX16

UA1_CTS_B

AO_MX5

AO_MX17

UART2

256 bytes

UA2_TXD

AO_MX6

AO_MX26

UA2_RXD

AO_MX7

AO_MX27

UA2_RTS_B

AO_MX8

AO_MX28

UA2_CTS_B

AO_MX9

AO_MX29

UART3

128 bytes

UA3_TXD

AO_MX12

G_MX7

UA3_RXD

AO_MX13

G_MX8

UART6

128 bytes

UA6_TXD

AO_MX30

G_MX48

UA6_RXD

AO_MX31

G_MX49

UART7

128 bytes

UA7_TXD

AO_MX32

UA7_RXD

AO_MX33

UADBG

128 bytes

UADBG_TXD

G_MX13

UADBG_RXD

G_MX14

12.2 SPI

SP7350 boasts up to five SPI ports, each designed to facilitate high-speed data transfer between interconnected devices. Among these, SPI 0, 1, 2, 3, and 4 operate as master controllers, while SPI 5 assumes the role of a slave controller. With a clock rate of up to 25MHz, these SPI ports offer rapid data transmission, catering to a diverse range of application requirements.

A meticulous examination of the SPI channels and their respective pin configurations provides invaluable insights into system connectivity. The following table elucidates the mode, signals, and pin assignments for each SPI channel:

Channel

Mode

Signals

Pins of Position X1

Pins of Position X2

SPI_CB0

Master

SPI_CB0_RXD

AO_MX14

G_MX9

SPI_CB0_SS

AO_MX15

G_MX10

SPI_CB0_TXD

AO_MX16

G_MX11

SPI_CB0_CLK

AO_MX17

G_MX12

SPI_CB1

Master

SPI_CB1_RXD

AO_MX30

G_MX14

SPI_CB1_SS

AO_MX31

G_MX15

SPI_CB1_TXD

AO_MX32

G_MX16

SPI_CB1_CLK

AO_MX33

G_MX17

SPI_CB2

Master

SPI_CB2_RXD

AO_MX38

SPI_CB2_SS

AO_MX39

SPI_CB2_TXD

AO_MX40

SPI_CB2_CLK

AO_MX41

SPI_CB3

Master

SPI_CB3_RXD

G_MX44

AO_MX2

SPI_CB3_SS

G_MX45

AO_MX3

SPI_CB3_TXD

G_MX46

AO_MX4

SPI_CB3_CLK

G_MX47

AO_MX5

SPI_CB4

Master

SPI_CB4_RXD

AO_MX22

SPI_CB4_SS

AO_MX23

SPI_CB4_TXD

AO_MX24

SPI_CB4_CLK

AO_MX25

SPI_CB5

Slave

SPI_CB5_RXD

AO_MX44

AO_MX22

SPI_CB5_SS

AO_MX45

AO_MX23

SPI_CB5_TXD

AO_MX46

AO_MX24

SPI_CB5_CLK

AO_MX47

AO_MX25

12.3 I2C

SP7350 offers up to ten distinct ports, providing ample flexibility for system integration. These ports can function as either masters or slaves, facilitating bidirectional communication between interconnected devices. Moreover, the ports exhibit remarkable versatility, supporting Standard Mode (100 kHz), Fast Mode (400 kHz), and High-Speed Mode (1.2 MHz) for clock (SCL) frequencies.

The following table elucidates the pinout details for each I2C channel, delineating the signals, corresponding pins at Position X1 and Position X2.

Channel

Signals

Pins of Position X1

Pins of Position X2

I2C0

I2C0_CLK

AO_MX18

AO_MX4

I2C0_DATA

AO_MX19

AO_MX5

I2C1

I2C1_CLK

AO_MX20

I2C1_DATA

AO_MX21

I2C3

I2C3_CLK

AO_MX38

I2C3_DATA

AO_MX39

I2C4

I2C4_CLK

AO_MX40

I2C4_DATA

AO_MX41

I2C5

I2C5_CLK

AO_MX42

I2C5_DATA

AO_MX43

I2C6

I2C6_CLK

AO_MX34

G_MX1

I2C6_DATA

AO_MX35

G_MX2

I2C7

I2C7_CLK

AO_MX36

G_MX3

I2C7_DATA

AO_MX37

G_MX4

I2C8

I2C8_CLK

AO_MX45

G_MX9

I2C8_DATA

AO_MX46

G_MX10

I2C9

I2C9_CLK

AO_MX47

G_MX11

I2C9_DATA

AO_MX48

G_MX12

13. RTC, STC, PWM and Clock Generators

13.1 Real-Time Clock

A 64-bit timer operates with a 32.768 kHz clock in an independent RTC power domain. Registers allow configuration of the timer within the range of 0 to 59 seconds, 0 to 59 minutes, 0 to 23 hours, and 0 to 65536 days. A maskable alarm interrupt can be set by configuring the second, minute, hour, and day.

13.2 System Time Counter (STC)

The SP7350 features seven System Time Counters (STCs), each comprising a 64-bit STC counter, a 24-bit RTC counter, a 32-bit watchdog counter, three 32-bit timers (timer 0, 1, 2), a 64-bit timer (timer 3), and a 34-bit ATC counter.

The STC counter operates as a 64-bit up-counting counter, with its trigger source scaled by a 15-bit pre-scaler (stc_prescaler). This pre-scaler can derive its source from either the system clock or an external clock, which can be a 25 MHz crystal or a 32.768 kHz crystal. Before reaching the pre-scaler, the external clock undergoes division by an 8-bit divider (ext_div).

The RTC counter functions as a 24-bit up-counting counter, triggered by the pre-scaler output of the STC and further divided by a 14-bit pre-scaler (rtc_prescaler). Meanwhile, the watchdog counter operates as a 32-bit down-counting counter, sharing the same trigger source as the STC counter. Upon reaching a count of 0, the watchdog counter can be configured to trigger various actions, including generating an interrupt, resetting the system, or executing a combination of interrupt followed by system reset.

The down-counting counters for timer 0, 1, and 2 have a width of 32 bits, whereas timer 3 boasts a wider 64-bit width. Their trigger sources can be configured to include the system clock, the pre-scaler output of the STC, the pre-scaler output of the RTC, or the output of another timer. Upon reaching a count of 0, the counters generate an interrupt, and the value stored in the reload register is automatically re-loaded into the counter in repeat mode.

Additionally, the ATC counter serves as a 24-bit up-counting counter, triggered by the pre-scaler output of the STC.

Here's a breakdown of the individual STCs, their power domain, group assignment, and interrupt target:

STC Name

Power domain

Group

Interrupt to

Remarks

STC_TIMESTAMP

Main

G11

CA55

STC_AV3

Main

G12

CA55

Watchdog is used by Linux kernel watchdog.

STC

AO

G23

CA55 & CM4

STC_AV0

AO

G24

CA55 & CM4

STC_AV1

AO

G25

CA55 & CM4

STC_AV2

AO

G26

CA55 & CM4

No watchdog

STC_AV4

AO

G38

CA55 & CM4

13.3 Pulse-Width Modulation (PWM)

Up to four 12-bit PWM channels are available with a pre-scaling factor from 1 to 512. The duty cycle is configurable from 0 to 100%, and the polarity of the output is also configurable.

Channel

Pin at Position X1

Pin at Position X2

Remarks

PWM_CH0

AO_MX28

AO_MX8

PWM_CH1

AO_MX29

AO_MX9

PWM_CH2

AO_MX10

AO_MX42

PWM_CH3

AO_MX11

AO_MX43

13.4 Clock Generators

Various clocks can be generated by a digital PLL and output through GPIO pins, including CLKMCU, CLKWIFI, and CLKGNCMA. CLKRTC and CLKPHY output fixed frequencies of clocks. Note that digital PLL clocks offer average frequency, not stable frequencies. The source clock rate is 800 MHz, and the output clock rate is achieved by dividing the source clock rate by a divisor configured in registers. Clocks from the digital PLL may suffer from high jitter if the frequency of the generated clock is not divisible by the source frequency of the digital PLL.

Signals

Position X1

Position X2

Config Bits

Remarks

CLKMCU_DGO_PO

G_MX1

AO_MX2

G1.4[5:4]

Generated by DPLL1

CLKWIFI_DGO_PO

G_MX2

AO_MX12

G1.4[7:6]

Generate by DPLL2

CLKRTC_DGO_PO

G_MX12

AO_MX13

G1.4[9:8]

Fixed 32.678 kHz

CLKPHY_DGO_PO

G_MX13

AO_MX33

G1.4[11:10]

Fixed 25 MHz or 50 MHz

CLKGNCMA_DGO_PO

G_MX27

AO_MX3

G1.4[13:12]

Generated by DPLL3

14. GPIO

Up to 106 GPIOs are available, with 60 GPIO at 1.8V/3.3V voltage level and others at 1.8V voltage level. Driving strength is programmable.

14.1 Group of GPIO

The GPIO pins of SP7350 are organized into 10 distinct groups, each with its dedicated power supply. Refer to the table below for a breakdown of the power domains, supplying voltages, hardware pin names, and the corresponding supplying power pins for all IO pins of SP7350:

GPIO #

Power Domain

Type

Pin Name

Power-supply Pin

0 - 19

Main

1.8V GPIO

G_MX0 - G_MX19

VDDPST18_GPIO

20

1.8V/3.2V DVIO

G_MX20

VDDPST3018_DVIO_2

21 - 27

G_MX21 - G_MX27

VDDPST3018_DVIO_1

28 - 37

G_MX28 - G_MX37

VDDPST3018_DVIO_2

38 - 43

SD Card

G_MX38 - G_MX43

AVDDIO_3018_SD

44 - 49

SDIO

G_MX44 - G_MX49

AVDDIO_3018_SDIO

50 - 59

CM4 (AO)

1.8V/3.2V DVIO

AO_MX0 - AO_MX9

VDDPST3018_DVIO_AO_1

60 - 69

AO_MX10 - AO_MX19

VDDPST3018_DVIO_AO_2

70 - 79

AO_MX20 - AO_MX29

VDDPST3018_DVIO_AO_3

80 - 98

1.8V GPIO

AO_MX30 - AO_MX48

VDDPST18_GPIO_AO

99 - 105

IV_MX0 - IV_MX6

This table delineates the power domains and their respective supplying voltages, along with the hardware pin names and their corresponding supplying power pins for all IO pins of SP7350. Such organization facilitates efficient management and utilization of GPIO pins within the system.

14.2 Table of Default State of Power-on of GPIO

Ball Name

ST

DS[3:0]

SL

PE

PS

SPU

Remarks

G_MX0

1

1

1

1

1

0

Pull-up

G_MX1

1

1

1

1

0

0

Pull-down

G_MX2

1

1

1

1

0

0

Pull-down

G_MX3

1

1

1

1

0

0

Pull-down

G_MX4

1

1

1

1

1

0

Pull-down

G_MX5

1

1

1

1

1

0

Pull-up

G_MX6

1

1

1

1

1

0

Pull-up

G_MX7

1

1

1

1

1

0

Pull-up

G_MX8

1

1

1

1

1

0

Pull-up

G_MX9

1

1

1

1

0

0

Pull-down

G_MX10

1

1

1

1

0

0

Pull-down

G_MX11

1

1

1

1

1

0

Pull-up

G_MX12

1

1

1

1

1

0

Pull-up

G_MX13

1

1

1

1

1

0

Pull-up

G_MX14

1

1

1

1

1

0

Pull-up

G_MX15

1

1

1

1

1

0

Pull-up

G_MX16

1

1

1

1

1

0

Pull-up

G_MX17

1

1

1

1

1

0

Pull-up

G_MX18

1

1

1

1

1

0

Pull-up

G_MX19

1

1

1

1

1

0

Pull-up

AO_MX30

1

1

1

1

1

0

Pull-up

AO_MX31

1

1

1

1

1

0

Pull-up

AO_MX32

1

1

1

1

1

0

Pull-up

AO_MX33

1

1

1

1

1

0

Pull-up

AO_MX34

1

1

1

1

1

0

Pull-up

AO_MX35

1

1

1

1

1

0

Pull-up

AO_MX36

1

1

1

1

1

0

Pull-up

AO_MX37

1

1

1

1

0

0

Pull-down

AO_MX38

1

1

1

1

1

0

Pull-up

AO_MX39

1

1

1

1

0

0

Pull-down

AO_MX40

1

1

1

1

1

0

Pull-up

AO_MX41

1

1

1

1

0

0

Pull-down

AO_MX42

1

1

1

1

1

0

Pull-up

AO_MX43

1

1

1

1

0

0

Pull-down

AO_MX44

1

1

1

1

0

0

Pull-down

AO_MX45

1

1

1

1

0

0

Pull-down

AO_MX46

1

1

1

1

1

0

Pull-up

AO_MX47

1

1

1

1

1

0

Pull-up

AO_MX48

1

1

1

1

1

0

Pull-up

IV_MX0

1

1

1

1

1

0

Pull-up

IV_MX1

1

1

1

1

1

0

Pull-up

IV_MX2

1

1

1

1

1

0

Pull-up

IV_MX3

1

1

1

1

1

0

Pull-up

IV_MX4

1

1

1

1

1

0

Pull-up

IV_MX5

1

1

1

1

1

0

Pull-up

IV_MX6

1

1

1

1

1

0

Pull-up

  • ST (Schmitt Trigger Input): 1 indicates enabled, 0 indicates disabled.

  • DS[3:0] (Driving Strength): Refer to Table 15.4.1 for values.

  • SL (Slew Rate Control): 1 indicates enabled, 0 indicates disabled.

  • PE (Pull Enable): 1 indicates pull-up/down enabled, 0 indicates disabled.

  • PS (Pull Selector): 1 indicates pull-up, 0 indicates pull-down.

  • SPU (Strong Pull Up): 1 indicates enabled, 0 indicates disabled.

14.3 Table of Default State of Power-on of DVIO

Ball Name

ST

DS[3:0]

PU

PD

Remarks

G_MX20

1

3

1

0

Pull-up

G_MX21

1

3

1

0

Pull-up

G_MX22

1

3

0

1

Pull-down

G_MX23

1

3

1

0

Pull-up

G_MX24

1

3

1

0

Pull-up

G_MX25

1

3

1

0

Pull-up

G_MX26

1

3

1

0

Pull-up

G_MX27

1

3

0

1

Pull-down

G_MX28

1

3

1

0

Pull-up

G_MX29

1

3

1

0

Pull-up

G_MX30

1

3

1

0

Pull-up

G_MX31

1

3

1

0

Pull-up

G_MX32

1

3

0

1

Pull-down

G_MX33

1

3

1

0

Pull-up

G_MX34

1

3

1

0

Pull-up

G_MX35

1

3

1

0

Pull-up

G_MX36

1

3

1

0

Pull-up

G_MX37

1

3

1

0

Pull-up

G_MX38

1

3

0

0

HiZ

G_MX39

1

3

0

0

HiZ

G_MX40

1

3

0

0

HiZ

G_MX41

1

3

0

0

HiZ

G_MX42

1

3

0

0

HiZ

G_MX43

1

3

0

0

HiZ

G_MX44

1

3

0

0

HiZ

G_MX45

1

3

0

0

HiZ

G_MX46

1

3

0

0

HiZ

G_MX47

1

3

0

0

HiZ

G_MX48

1

3

0

0

HiZ

G_MX49

1

3

0

0

HiZ

AO_MX0

1

3

1

0

Pull-up

AO_MX1

1

3

1

0

Pull-up

AO_MX2

1

3

1

0

Pull-up

AO_MX3

1

3

1

0

Pull-up

AO_MX4

1

3

1

0

Pull-up

AO_MX5

1

3

1

0

Pull-up

AO_MX6

1

3

1

0

Pull-up

AO_MX7

1

3

1

0

Pull-up

AO_MX8

1

3

1

0

Pull-up

AO_MX9

1

3

1

0

Pull-up

AO_MX10

1

3

1

0

Pull-up

AO_MX11

1

3

1

0

Pull-up

AO_MX12

1

3

1

0

Pull-up

AO_MX13

1

3

1

0

Pull-up

AO_MX14

1

3

1

0

Pull-up

AO_MX15

1

3

1

0

Pull-up

AO_MX16

1

3

1

0

Pull-up

AO_MX17

1

3

0

1

Pull-down

AO_MX18

1

3

0

1

Pull-down

AO_MX19

1

3

1

0

Pull-up

AO_MX20

1

3

0

1

Pull-down

AO_MX21

1

3

1

0

Pull-up

AO_MX22

1

3

0

1

Pull-down

AO_MX23

1

3

0

1

Pull-down

AO_MX24

1

3

0

1

Pull-down

AO_MX25

1

3

0

1

Pull-down

AO_MX26

1

3

0

1

Pull-down

AO_MX27

1

3

1

0

Pull-up

AO_MX28

1

3

0

1

Pull-down

AO_MX29

1

3

1

0

Pull-up

  • ST (Schmitt Trigger Input): 1 indicates enabled, 0 indicates disabled.

  • DS[3:0] (Driving Strength): Refer to Table 15.4.2 for values.

  • PU (Pull Up): 1 indicates pull-up, 0 indicates disabled.

  • PD (PUll Down): 1 indicates pull-down, 0 indicates disabled.

14.4 GPIO Interrupt

The SP7350 provides eight external interrupt inputs from configured GPIO pins. The table below lists the external interrupts 0 to 7 and the corresponding pins each interrupt can be configured with:

Ball Name

GPIO_INT0

GPIO_INT1

GPIO_INT2

GPIO_INT3

GPIO_INT4

GPIO_INT5

GPIO_INT6

GPIO_INT7

G_MX1

X1

X1

G_MX2

X2

X2

G_MX3

X3

X3

G_MX4

X4

X4

G_MX5

X5

X5

X1

X1

G_MX6

X6

X6

X2

X2

G_MX7

X3

X3

X1

X1

G_MX8

X4

X4

X2

X2

G_MX9

X5

X5

X3

X3

X1

X1

G_MX10

X6

X6

X4

X4

X2

X2

G_MX11

X7

X7

X5

X5

X3

X3

G_MX12

X6

X6

X4

X4

G_MX13

X7

X7

X7

X7

X5

X5

G_MX14

X8

X8

X6

X6

G_MX15

X9

X9

X7

X7

G_MX16

X8

X8

X8

X8

G_MX17

X9

X9

X9

X9

G_MX18

X8

X8

X10

X10

G_MX19

X9

X9

X11

X11

In the table, X1 denotes the 1st signal output position. X2 denotes the 2nd signal output position. X3 denotes the 3rd signal output position. X11 denotes the 11th signal output position.

14.5 Alternative Function of GPIO

Many GPIO (General Purpose Input/Output) pins offer alternative functions, providing versatility in their usage. These alternatives may consist of one, two, or more sets of output pins. For instance, I2C0 can be configured to output signals either at AO_MX4 (I2C0_CLK) and AO_MX5 (I2C0_DATA), or at AO_MX18 (I2C0_CLK) and AO_MX19 (I2C0_DATA). Below is a comprehensive table listing the alternatives for all GPIO pins:

Power

Supply

Ball Name

GPIO

Function 1

Function 2

Function 3

Function 4

VDDPST18_GPIO

G_MX0

GPIO0

GMAC_LPI_O

G_MX1

GPIO1

CLKMCU (X1)

I2C6_CLK (X2)

G_MX2

GPIO2

CLKWIFI (X1)

I2C6_DATA (X2)

G_MX3

GPIO3

PHY_RXC

I2C7_CLK (X2)

G_MX4

GPIO4

PHY_RXDV

I2C7_DATA (X2)

G_MX5

GPIO5

PHY_RXD[0]

G_MX6

GPIO6

PHY_RXD[1]

G_MX7

GPIO7

PHY_TXD[0]

UA3_TXD (X2)

G_MX8

GPIO8

PHY_TXD[1]

UA3_RXD (X2)

 

G_MX9

GPIO9

RGMII_MDC

I2C8_CLK (X2)

SPI0_RXD (X2)

G_MX10

GPIO10

PHY_TXC

I2C8_DATA (X2)

SPI0_SS (X2)

G_MX11

GPIO11

PHY_TXEN

I2C9_CLK (X2)

SPI0_TXD (X2)

G_MX12

GPIO12

RGMII_MDIO

I2C9_DATA (X2)

SPI0_CLK (X2)

G_MX13

GPIO13

PHY_RXD[2]

CLKGENPHY (X1)

UADBG_TXD

CA55_TRSTN

G_MX14

GPIO14

PHY_RXD[3]

SPI1_RXD (X2)

UADBG_RXD

CA55_TMS

G_MX15

GPIO15

PHY_TXD[2]

SPI1_SS (X2)

CA55_TCK

G_MX16

GPIO16

PHY_TXD[3]

SPI1_TXD (X2)

CA55_TDI

G_MX17

GPIO17

SPI1_CLK (X2)

CA55_TDO

G_MX18

GPIO18

UPHY0_DRV5V_ENB

G_MX19

GPIO19

UPHY0_ID

DVIO_2

G_MX20

GPIO20

CARD0_SD_D[5]

 

PNAND_BUSY_B

DVIO_1

G_MX21

GPIO21

SPI_NOR_D[2]

SPI_NAND_D[2] (X2)

PNAND_WP_B

G_MX22

GPIO22

SPI_NOR_CLK

SPI_NAND_CLK (X2)

PNAND_DQS_CLK

G_MX23

GPIO23

SPI_NOR_D[1]

SPI_NAND_D[1] (X2)

PNAND_CE_B

G_MX24

GPIO24

SPI_NOR_D[3]

SPI_NAND_D[3] (X2)

PNAND_RE_B

G_MX25

GPIO25

SPI_NOR_CS_B

SPI_NAND_CS_B (X2)

PNAND_CLE

G_MX26

GPIO26

SPI_NOR_D[0]

SPI_NAND_D[0] (X2)

PNAND_ALE

G_MX27

GPIO27

CLKGNCMA (X1)

PNAND_WE_B

DVIO_2

G_MX28

GPIO28

CARD0_SD_D[3]

PNAND_DATA[0]

G_MX29

GPIO29

CARD0_SD_D[4]

PNAND_DATA[1]

G_MX30

GPIO30

CARD0_SD_D[0]

SPI_NAND_D[0] (X1)

PNAND_DATA[2]

G_MX31

GPIO31

CARD0_SD_D[1]

SPI_NAND_D[2] (X1)

PNAND_DATA[3]

G_MX32

GPIO32

CARD0_SD_CLK

SPI_NAND_CLK (X1)

PNAND_DQS

G_MX33

GPIO33

CARD0_SD_D[2]

SPI_NAND_D[1] (X1)

PNAND_DATA[4]

G_MX34

GPIO34

CARD0_SD_D[7]

SPI_NAND_D[3] (X1)

PNAND_DATA[5]

G_MX35

GPIO35

CARD0_SD_D[6]

SPI_NAND_CS_B (X1)

PNAND_DATA[6]

G_MX36

GPIO36

CARD0_SD_CMD

PNAND_DATA[7]

G_MX37

GPIO37

CARD0_SD_DS

SD CARD

G_MX38

GPIO38

CARD1_SD_D[1]

G_MX39

GPIO39

CARD1_SD_D[0]

G_MX40

GPIO40

CARD1_SD_CLK

G_MX41

GPIO41

CARD1_SD_CMD

G_MX42

GPIO42

CARD1_SD_D[3]

G_MX43

GPIO43

CARD1_SD_D[2]

SDIO

G_MX44

GPIO44

CARD2_SD_D[1]

SPI3_RXD (X1)

G_MX45

GPIO45

CARD2_SD_D[0]

SPI3_SS (X1)

G_MX46

GPIO46

CARD2_SD_CLK

SPI3_TXD (X1)

G_MX47

GPIO47

CARD2_SD_CMD

SPI3_CLK (X1)

G_MX48

GPIO48

CARD2_SD_D[3]

UA6_TXD (X2)

G_MX49

GPIO49

CARD2_SD_D[2]

UA6_RXD (X2)

DVIO_AO_1

AO_MX0

GPIO50

UA0_TXD (X1)

 

 

AO_MX1

GPIO51

UA0_RXD (X1)

 

 

 

AO_MX2

GPIO52

UA1_TXD (X1)

CLKMCU (X2)

SPI3_RXD (X2)

AO_MX3

GPIO53

UA1_RXD (X1)

CLKGNCMA (X2)

SPI3_SS (X2)

AO_MX4

GPIO54

UA1_RTS_B (X1)

I2C0_CLK (X2)

SPI3_TXD (X2)

AO_MX5

GPIO55

UA1_CTS_B (X1)

I2C0_DATA (X2)

SPI3_CLK (X2)

AO_MX6

GPIO56

UA2_TXD (X1)

I2C2_CLK (X2)

AU1_BCK (X1)

AO_MX7

GPIO57

UA2_RXD (X1)

I2C2_DATA (X2)

AU1_LRCK (X1)

AO_MX8

GPIO58

UA2_RTS_B (X1)

PWM_CH0 (X2)

AU1_DATA0 (X1)

ADC1_DATA0 (X1)

AO_MX9

GPIO59

UA2_CTS_B (X1)

PWM_CH1 (X2)

DVIO_AO_2

AO_MX10

GPIO60

PWM_CH2 (X1)

 

 

AO_MX11

GPIO61

PWM_CH3 (X1)

 

 

AO_MX12

GPIO62

UA3_TXD (X1)

CLKWIFI (X2)

 

 

AO_MX13

GPIO63

UA3_RXD (X1)

CLKRTC (X2)

 

 

AO_MX14

GPIO64

SPI0_RXD (X1)

UA1_TXD (X2)

 

 

AO_MX15

GPIO65

SPI0_SS (X1)

UA1_RXD (X2)

 

 

AO_MX16

GPIO66

SPI0_TXD (X1)

UA1_RTS_B (X2)

 

 

AO_MX17

GPIO67

SPI0_CLK (X1)

UA1_CTS_B (X2)

 

 

AO_MX18

GPIO68

I2C0_CLK (X1)

UA0_TXD (X2)

 

 

AO_MX19

GPIO69

I2C0_DATA (X1)

UA0_RXD (X2)

 

 

DVIO_AO_3

AO_MX20

GPIO70

I2C1_CLK (X1)

 

 

 

AO_MX21

GPIO71

I2C1_DATA (X1)

 

EXT_DAC_XCK1

AO_MX22

GPIO72

SPI4_RXD (X1)

SPI5_RXD (X2)

AU_BCK (X2)

AO_MX23

GPIO73

SPI4_SS (X1)

SPI5_SS (X2)

AU_LRCK (X2)

AO_MX24

GPIO74

SPI4_TXD (X1)

SPI5_TXD (X2)

ADC_DATA0 (X2)

AO_MX25

GPIO75

SPI4_CLK (X1)

SPI5_CLK (X2)

AU_DATA0 (X2)

AO_MX26

GPIO76

I2C2_CLK (X1)

UA2_TXD (X2)

 

 

AO_MX27

GPIO77

I2C2_DATA (X1)

UA2_RXD (X2)

 

 

AO_MX28

GPIO78

PWM_CH0 (X1)

UA2_RTS_B (X2)

 

 

AO_MX29

GPIO79

PWM_CH1 (X1)

UA2_CTS_B (X2)

 

 

GP1

AO_MX30

GPIO80

UA6_TXD (X1)

SPI1_RXD (X1)

AU2_BCK (X1)

AO_MX31

GPIO81

UA6_RXD (X1)

SPI1_SS (X1)

AU2_LRCK (X1)

AO_MX32

GPIO82

UA7_TXD (X1)

SPI1_TXD (X1)

AU2_DATA0 (X1)

ADC2_DATA0 (X1)

AO_MX33

GPIO83

UA7_RXD (X1)

SPI1_CLK (X1)

EXT_DAC_XCK_TM

CLKGENPHY (X2)

AO_MX34

GPIO84

I2C6_CLK (X1)

AO_MX35

GPIO85

I2C6_DATA (X1)

AO_MX36

GPIO86

I2C7_CLK (X1)

AO_MX37

GPIO87

I2C7_DATA (X1)

AO_MX38

GPIO88

I2C3_CLK (X1)

SPI2_RXD (X1)

CM4_TRSTN

AO_MX39

GPIO89

I2C3_DATA (X1)

SPI2_SS (X1)

CM4_TMSSWD

AO_MX40

GPIO90

I2C4_CLK (X1)

SPI2_TXD (X1)

CM4_SWCLKTCK

AO_MX41

GPIO91

I2C4_DATA (X1)

SPI2_CLK (X1)

CM4_SWDO

AO_MX42

GPIO92

I2C5_CLK (X1)

PWM_CH2 (X2)

CM4_TDI

AO_MX43

GPIO93

I2C5_DATA (X1)

PWM_CH3 (X2)

CM4_TDO

TDMTX_XCK_TM

AO_MX44

GPIO94

I2C8_CLK (X1)

SPI5_RXD (X1)

AU_BCK (X1)

TDMTX_BCK

AO_MX45

GPIO95

I2C8_DATA (X1)

SPI5_SS (X1)

AU_LRCK (X1)

TDMTX_SYNC

AO_MX46

GPIO96

 

SPI5_TXD (X1)

ADC_DATA0 (X1_

TDMTX_DATA16

AO_MX47

GPIO97

I2C9_CLK (X1)

SPI5_CLK (X1)

AU_DATA0 (X1)

TDMTX_DATA16_O

AO_MX48

GPIO98

I2C9_DATA (X1)

 

 

 

GP2

IV_MX0

GPIO99

 

 

 

IV_MX1

GPIO100

 

 

IV_MX2

GPIO101

 

 

IV_MX3

GPIO102

 

 

IV_MX4

GPIO103

 

 

IV_MX5

GPIO104

 

 

IV_MX6

GPIO105

 

 

In the table, X1 denotes the 1st signal output position. X2 denotes the 2nd signal output position. This table serves as a valuable reference for users, facilitating a clear understanding of the alternative functions associated with each GPIO pin. This understanding enables efficient utilization across a range of configurations.

15 Recommended Operating Conditions

15.1 Power Supply

Parameter Description

Power Name

Min.

Typ.

Max.

Unit

Comments

Power for PLL

AVDD08_PLLC

AVDD08_PLLD

AVDD08_PLLS

0.76

0.80

0.84

V

 

Power for SDIO

AVDD30_SD_SDIO

3.04

3.20

3.36

V

 

Power for DDRPHY PLL

BP_VAA

1.71

1.80

1.89

V

 

Power for DRAM controller

DRAM_VDD

0.76

0.80

0.84

V

 

Power for DRAM IO pins

DRAM_VDDQ

1.06

1.14

1.14

1.29

1.43

1.10

1.20

1.20

1.35

1.50

1.15

1.26

1.26

1.41

1.57

V

V

V

V

V

LPDDR4

DDR4

LPDDR3

DDR3L

DDR3

Power for CPIO

CPIOR_AVDD08

0.76

0.80

0.84

V

Power for CPIO

CPIOR_AVDD10

1.71

1.80

1.89

V

Power for MIPI RX

MIPI4_AVDD08

MIPI5_AVDD08

0.76

0.80

0.84

V

 

Power for MIPI RX

MIPI4_AVDD18

MIPI5_AVDD18

1.71

1.80

1.89

V

 

Power for MIPI TX

MIPITX_AVDD18

1.71

1.80

1.89

V

Power for ADC

SAR12B_AVDD18

1.71

1.80

1.89

V

 

Power for thermal sensor

TML_AVDD18

1.17

1.80

1.89

V

 

Power for USB2

USB20_AVDD18

1.71

1.80

1.89

V

 

Power for USB2

USB20_AVDD33

3.14

3.30

3.46

V

 

Power for USB3

USB3_AVDD08

0.76

0.80

0.84

V

 

Power for USB3

USB3_DVDD08

0.76

0.80

0.84

V

 

Power for USB3

USB3_VDD33

3.14

3.30

3.46

V

 

Power for digital core

VDD

0.76

0.80

0.84

V

 

Power for Always-On digital core

VDD_AO

0.76

0.80

0.84

V

 

Power for video codec

VDD_BLOCKA

0.76

0.80

0.84

V

 

Power for CPU

VDD_CA55

0.80

0.84

0.88

 

 

Power for NPU

VDD_NPU

0.80

0.84

0.88

V

 

Power for GPIO

VDDPST18_GPIO_0

VDDPST18_GPIO_1

VDDPST18_GPIO_AO

VDDPST18_GPIO_RTC

1.71

1.80

1.89

V

 

Power for Dual Voltage GPIO

VDDPST3018_DVIO_1

VDDPST3018_DVIO_2

VDDPST3018_DVIO_AO_1

VDDPST3018_DVIO_AO_2

VDDPST3018_DVIO_AO_3

3.04

/

1.71

3.20

/

1.80

3.36

/

 1.89

V

Support two voltage levels

Power for crystal

X32K_AVDD18

1.71

1.80

1.89

V

 

15.2 Junction Temperature

Minimum

Maximum

Junction temperature

-20℃

100℃

16 Electric Characteristics

16.1 Absolute Maximum Ratings

Symbol

Parameter

Min.

Max.

Unit

VDD33

Supply voltage 3.3V

3.0

3.63

V

VDD_CA55

Supply voltage 0.85V for CA55

0.8

0.89

V

VDD_NPU

Supply voltage 0.85V for NPU

0.8

0.89

V

VDD08

Supply voltage 0.8V for DRAM, video codec, chip top system, AO (Always On) and RTC power domain, and other 0.8V for Analog core power

0.72

0.88

V

VDD18

Supply voltage 1.8V

1.72

1.98

V

VDD11

Supply voltage 1.1V

1.06

1.17

V

VDD30

Supply voltage 3.0V2

2.7

3.3

V

VO33

Output voltage 3.3V

3.0

3.63

V

VO18

Output voltage 1.8V

1.72

1.98

V

VI33

3.3V input voltage (3.3V tolerant inputs)

3.0

3.63

V

VI18

1.8V input voltage

1.72

1.98

V

TJ

Junction temperature

-30

120

°C

TSTG

Storage temperature

-40

150

°C

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damages to the device. Functional operations of this device at these or any other conditions above those indicated in the operational sections of this specification are not implied and the exposure to absolute maximum rating conditions for extended periods may affect the device’s reliability.

16.2 Thermal Information

Symbol

Parameter

Unit (°C/W)

θJA

Thermal resistance, junction to ambient (JEDEC PCB 4 Layer; Air flow = 0m/s, Ambient 85°C)

13.9

ΨJT

Junction-to-top characterization parameter

0.08

Note: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In application where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

16.3 ESD Ratings

Symbol

Parameters

Min.

Max.

Unit

VESD

Human Body Model (test Per JS-001-2017)

-2

+2

kV

Charge Device Mode (test Per JESD22-C101F)

-500

+500

V

ILA

Latch-up tolerance (test Per JESD78E)

-100

+100

mA

16.4 DC Characteristics

Voltage referenced to VSS = 0V, Ta =25°C

16.4.1 3.0/1.8V DVIO Specification (3.0V Mode)

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VIH

High-level input voltage

-

1.875

-

3.3

V

VIL

Low-level input voltage

-

0

-

0.75

V

VOH

High-level output voltage

2.75

-

VDD33

V

VOL

Low-level output voltage

0

-

0.375

V

IOZ

High-impedance state output current

VO = 0 to VDD30

 

±13

 

mA

CI

Input capacitance

 

5

 

pF

16.4.2 3.0/1.8V DVIO Specification (1.8V Mode)

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VIH

High-level input voltage

-

1.27

-

1.98

V

VIL

Low-level input voltage

-

0

-

0.58

V

VOH

High-level output voltage

1.45

-

1.98

V

VOL

Low-level output voltage

0

-

0.45

V

IOZ

High-impedance state output current

VO = 0 to VDD18

 

±1

 

mA

CI

Input capacitance

 

5

 

pF

16.4.3 1.8V GPIO Specification

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VIH

High-level input voltage

-

1.17

-

VDD18

V

VIL

Low-level input voltage

-

0

-

0.63

V

VOH

High-level output voltage

1.35

-

VDD18

V

VOL

Low-level output voltage

0

-

0.45

V

IOZ

High-impedance state output current

VO = 0 to VDD18

 

±1

 

mA

CI

Input capacitance

 

5

 

pF

16.4.4 Crystal XIN 25MHz Specification

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

 

Power for Xin 25 MHz

 

0.72

0.80

0.88

V

VIH

High-level input voltage

 

0.70

 

VDD08

V

VIL

Low-level input voltage

 

0

 

0.30

V

CI

Input capacitance

 

 

5

 

pF

RXIN

Input impedance

 

 

13

 

 

Power down current

 

 

2.69

51.1

µA

16.4.5 Crystal XIN 32.678kHz Specification

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

 

Power for Xin 32.768 kHz

 

1.62

1.80

1.98

V

VIH

High-level input voltage

 

0.70

 

VDD08

V

VIL

Low-level input voltage

 

0

 

0.3

V

CI

Input capacitance

 

 

5

 

pF

RXIN

Input impedance

 

 

13

 

16.4.6 SAR ADC Specification

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

 

Power for SAR ADC

 

1.62

1.80

1.98

V

RSSAR

Resolution

 

 

12

 

bits

ENOB

Effective number of bits

 

 

10

 

bits

INLSAR

Integral nonlinearity

Fin = 10Hz

Fs = 250kHz

3

LSB

DNLSAR

Differential nonlinearity

 

3

 

LSB

 

Input range

 

0

 

VDD18

V

 

Power down current

 

 

4.52

46.8

µA

16.4.7 Thermal Sensor Specification

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

ADC resolution

11

bits

Operation temperature range

-40

125

Temperature resolution

@-10~90℃

0.2

Temperature accuracy

@-10~90℃

1

4

Active power

1.4

mW

FCLK

Clock frequency

1000

kHz

Power down current

1.5

µA

16.4.8 USB2.0 PHY Specification

16.4.8.1 Transmitter

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VIH

High input level

Classic (FS)

2.0

V

VIL

Low input level

Classic (FS)

0.8

V

ROUT

Output resistance

Classic mode

(Vout= 0 or 3.3V)

40.5

45

49.5

Ω

HS mode

(Vout = 0 to 800mV)

40.5

45

49.5

Ω

COUT

Output capacitance

Seen from D+ or D-

3.5

4.5

pF

VM

Output common mode voltage

Classic (FS) mode

1.485

1.65

1.8

V

HS mode

0.18

0.2

0.22

V

VOH

Differential output signal high

Classic (FS);

Io = 0mA

2.97

3.3

3.63

V

Classic (FS);

Io = 6mA

2.71

3.05

3.38

V

HS mode; Io = 0mA

360

400

440

mV

VOL

Differential output signal low

Classic (FS);

Io = 0mA

0

-

0.3

V

Classic (FS);

Io = 6mA

-0.166

-0.155

-0.144

V

HS mode; Io = 0mA

-10

0

10

mV

16.4.8.2 Receiver

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

RCM

Receiver common mode

Classic mode

0.80

1.65

2.50

V

HS mode

(differential and squelch comparator)

0.10

0.125

0.20

V

HS mode

(disconnect comparator)

0.525

0.575

0.625

V

16.4.9 USB3.1 PHY Specification

16.4.9.1 Transmitter

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VTX-DIFF-PP

DifferentialP-P TX voltage swing

 

0.8

1.0

1.2

V

VTX-DIFF-PP-LOW

Low-power differentialP-P
TX voltage swing

 

0.4

N/A

1.2

V

VTX-DE-RATIO

TX de-emphasis

 

0.4

N/A

1.2

V

RTX-DIFF-DC

DC differential impedance

 

72

N/A

120

Ω

VTX-RCV-DETECT

The amount of voltage change allowed during receiver detection

 

N/A

N/A

0.6

V

CAC-COUPLING

AC Coupling Capacitor

 

75

N/A

265

nF

VTx-CM-IDLE-DELTA

Transmitter idle common-mode voltage change

 

600

N/A

-600

mV

TCDR_SLEW_MAX

Maximum slew-rate

 

N/A

N/A

10

ms/s

16.4.9.2 Receiver

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

RRX-DC

Receiver DC common mode impedance

 

18

N/A

30

Ω

RRX-DIFF-DC

DC differential impedance

 

72

N/A

120

Ω

VRX-LFPS-DET-DIFFp-p

LFPS detect threshold

 

100

N/A

300

mV

CRX-AC-COUPLING

AC coupling capacitor

 

297

N/A

363

nF

VRX-DIFF-PP-POST-EQ

Differential RX peak-to-peak voltage

 

30

N/A

N/A

mV

CRX-PARASITIC

RX input capacitance for return loss

 

N/A

N/A

1.1

pF

VRX- CM-DC-ACTIVEIDLE-
DELTA_P

RX AC common mode voltage during the U1 to U0 transition

 

N/A

N/A

200

mV peak

16.4.10 MIPI CSI RX PHY Specification

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VIH

High input level

Classic (FS)

2.0

N/A

N/A

V

VIL

Low input level

Classic (FS)

N/A

N/A

0.8

V

ROUT

Output resistance

Classic mode

(Vout = 0 or 3.3V)

40.5

45

49.5

Ω

HS mode

(Vout = 0 to 800mV)

40.5

45

49.5

Ω

COUT

Output capacitance

Seen from D+ or D-

N/A

3.5

4.5

pF

VM

Output common mode voltage

Classic (FS) mode

1.45

1.65

1.85

V

HS mode

0.175

0.2

0.225

V

VOH

Differential output signal high

Classic (FS);

Io = 0mA

2.97

3.3

3.63

V

Classic (FS);

Io = 6mA

2.91

3

3.08

V

HS mode; Io = 0mA

360

400

440

mV

VOL

Differential output signal low

Classic (FS);

Io = 0mA

-0.33

0

0.33

V

Classic (FS);

Io = 6mA

-0.42

-0.34

-0.31

V

HS mode; Io = 0mA

-40

0

40

mV

16.4.11 MIPI TX PHY Specification

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VDD18A_MIPITX

1.8V analog supply voltage

1.62

1.8

1.98

V

FREF

Input clock range

25

MHz

TSKEW

Clock to data skew

-0.15

0.15

UI

16.4.11.1 MIPI CSI RX High-Speed Mode

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VCMRX(DC)

Common-mode voltage HS receive mode

 

70

 

3301,2

mV

VIDTH

Differential input high threshold

 

 

 

703

mV

 

 

 

404

mV

VIDTL

Differential input low threshold

 

-703

 

 

mV

 

-404

 

 

mV

VIHHS

Single-ended input high voltage

 

 

 

4601

mV

VILHS

Single-ended input low voltage

 

-401

 

 

mV

FCLK

Operating frequency

 

80

 

1250

MHz

VTERM-EN

Single-ended threshold for HS termination enable

 

 

 

450

mV

ZID

Differential input impedance

 

80

100

125

Ω

Note:

  1. Excluding possible additional RF interference of 100 mV peak sine wave beyond 450 MHz.

  2. This table value includes a ground difference of 50 mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450 MHz.

  3. For devices supporting data rates <= 1.5Gbps

  4. For devices supporting data rates > 1.5Gbps

16.4.11.2 MIPI CSI RX Low-Speed Mode

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

VIH

Logic 1 input voltage

 

8801

 

 

mV

 

7402

 

 

mV

VIL

Logic 0 input voltage, not in ULP State

 

 

 

550

mV

VIL-ULPS

Logic 0 input voltage, ULP State

 

 

 

300

mV

VHYST

Input hysteresis

 

25

 

 

mV

Note:

  1. Excluding possible additional RF interference of 100 mV peak sine wave beyond 450 MHz.

  2. This table value includes a ground difference of 50 mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450 MHz.

16.4.12 Driving-strength Table of GPIO

DS[3:0]

Source Current (mA)

Sink Current (mA)

Min.

Typ.

Max.

Min.

Typ.

Max.

0

0.8

1.1

1.5

0.7

1.1

1.6

1

1.1

1.6

2.2

1.1

1.7

2.3

2

2.3

3.3

4.3

2.1

3.3

4.7

3

3.4

4.9

6.5

3.2

5.0

7.0

4

4.5

6.6

8.6

4.2

6.6

9.3

5

5.7

8.2

10.8

5.3

8.3

11.7

6

6.8

9.9

13.0

6.3

9.9

13.9

7

7.9

11.5

15.1

7.4

11.6

16.2

8

9.0

13.1

17.2

8.4

13.2

18.5

9

10.2

14.8

19.4

9.4

14.8

20.8

10

11.3

16.4

21.6

10.5

16.5

23.1

11

12.4

18.1

23.7

11.5

18.1

25.4

12

13.5

19.6

25.8

12.6

19.7

27.6

13

14.7

21.3

28.0

13.6

21.4

29.9

14

15.8

22.9

30.1

14.6

23.0

32.1

15

16.9

24.6

32.3

15.7

24.6

34.4

16.4.13 Driving-strength Table of DVIO

DS[3:0]

Source Current (mA)

Sink Current (mA)

Min.

Typ.

Max.

Min.

Typ.

Max.

0

1.9

5.1

9.9

4.0

6.2

8.6

1

2.8

7.6

14.8

6.0

9.3

12.9

2

3.7

10.1

19.8

8.1

12.5

17.1

3

4.6

12.6

24.7

10.1

15.6

21.4

4

5.6

15.2

29.7

12.1

18.7

25.7

5

6.5

17.7

34.6

14.1

21.8

29.9

6

7.4

20.2

39.5

16.1

24.9

34.2

7

8.3

22.7

44.3

18.1

27.9

38.4

8

9.3

25.2

49.3

20.1

31.0

42.7

9

10.2

27.7

54.2

22.1

34.1

46.9

10

11.1

30.3

59.1

24.1

37.2

51.1

11

12.0

32.8

64.0

26.1

40.3

55.3

12

13.0

35.3

68.9

28.1

43.4

59.5

13

13.9

37.8

73.7

30.1

46.4

63.8

14

14.8

40.3

78.6

32.1

49.5

67.9

15

15.7

42.7

83.4

34.1

52.6

72.1

16.4.14 Resistance of Pull-up and down of GPIO

Parameters

Min.

Typ.

Max.

Unit

Remarks

RSPU

1.6

2.1

3

Resistance of strong pull up

RPU

32

48

79

Resistance of pull up

RPD

30

44

65

Resistance of pull down

16.4.15 Resistance of Pull-up and down of DVIO

Parameters

Min.

Typ.

Max.

Unit

Remarks

RPU

29

35

45

Resistance of pull up

RPD

24

28

33

Resistance of pull down

16.5 AC Characteristics

16.5.1 SPI-NAND AC Timing Specification

16.5.1.1 SPI-NAND Timing Diagram
image-20240422-075624.pngimage-20240422-075717.png
16.5.1.2 SPI-NAND Timing Parameters (3.3V)

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

tCK

Clock cycle for SPI flash

 

9.76

9.76

 

ns

tCKH

Clock high-level width for SPI flash

 

4.88

4.88

 

ns

tCKL

Clock low-level width for SPI flash

 

4.88

4.88

 

ns

tSLCH

SPI_NAND_CEN active setup time relative to SPI_NAND_CLK

 

19.5

 

ns

tDDLY

Write data output delay from SPI_CLK falling edge

 

0

0

 

ns

tRDVLD

Read data valid time

 

8

ns

16.5.1.3 SPI-NAND Timing Parameters (1.8V)

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

tCK

Clock cycle for SPI flash

 

6.5

7.5

 

ns

tCKH

Clock high-level width for SPI flash

 

3.25

3.75

 

ns

tCKL

Clock low-level width for SPI flash

 

3.25

3.75

 

ns

tSLCH

SPI_NAND_CEN active setup time relative to SPI_NAND_CLK

 

13

 

ns

tDDLY

Write data output delay from SPI_CLK Falling edge

 

0

0

 

ns

tRDVLD

Read data valid time

 

8

ns

16.5.2 I2S Master AC Timing Specification

16.4.2.1 I2S Master Timing Diagram
image-20240422-075839.pngimage-20240422-075919.png
16.5.2.2 I2S Master AC Timing Parameters

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TLR = 1/FS

LRCK period (1/FS)

5.208

31.25

µs

FS

LRCK frequency

32

192

kHz

TBCK = 1/ FBCK

BCK period

81.38

488.28

ns

FBCK

BCK frequency

2.048

12.288

MHz

TBCKL

BCK pulse width low

244

ns

TBCKH

BCK pulse width high

244

ns

TLRB

LRCK edge to BCK rising edge

10

ns

TDINS

I2S_DIN set-up time

10

ns

TDINH

I2S_DIN hold time

10

ns

TDOUTS

I2S_DOUT set-up time

10

ns

TDOUTH

I2S_DOUT hold time

10

ns

Tsmd

XCK to BCK active edge delay

0

15

ns

Timd

XCK to LRCK delay

0

15

ns

Note: FS (unit: Hz): 32K, 48K, 96K, 192K, 44.1K, 88.2K, 176.4K

16.5.3 I2S Slave AC Timing Specification

16.5.3.1 I2S Slave Timing Diagram
image-20240422-080027.png
16.5.3.2 I2S Slave Timing Parameters

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

tds

DIN setup time before BCK rising edge

38.0

ns

tdh

DIN hold time after BCK rising edge

30

44.0

ns

tsckh

BCK high time

40

ns

tsckl

BCK low time

40

ns

tlrck

BCK falling edge to LRCK

2.8

ns

16.5.4 SPI NOR AC Timing Specification

16.5.4.1 SPI NOR Timing Diagram
image-20240422-080138.pngimage-20240422-080240.png
16.5.4.1 NOR NAND Timing Parameters (3.3/1.8V)

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

tCK

Clock cycle for SPI NOR Flash

 

9.76

9.76

 

ns

tCKH

Clock high-level width for SPI NOR Flash

 

4.88

4.88

 

ns

tCKL

Clock low-level width for SPI NOR Flash

 

4.88

4.88

 

ns

tSLCH

SPI_NOR_CEN active setup time relative to SPI_NOR_CLK

 

19.5

 

ns

tDDLY

Write data output delay from SPI_NOR_CLK falling edge

 

0

2.50

 

ns

tRDVLD

Read data valid time

 

8

ns

16.5.5 SD/SDIO Timing Specification

16.5.5.1 SD/SDIO AC Timing Diagram
image-20240422-080354.png
16.5.5.2 SD/SDIO (High-Speed) Timing Parameters

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

Fck2

Clock frequency data transfer mode

High Speed

0

 

50

MHz

TWL2

Clock low time

High Speed

 

12.1

 

ns

TWH2

Clock high time

High Speed

 

9.0

 

ns

TTLH2

Clock rise time

High Speed

 

1.5

 

ns

TTHL2

Clock fall time

High Speed

 

1.6

 

ns

TSU2

Input set-up time

High Speed

 

14.7

 

ns

TIH2

Input hold time

High Speed

 

4.3

 

ns

TODLY

Output delay time during data transfer mode

High Speed

 

9.3

 

ns

TOH

Output hold time

High Speed

 

9.5

 

ns

Note: The default mode timing is covered by high speed mode.

16.5.5.3 SD/SDIO (SDR Mode) Timing Parameters

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

Fck2

Clock frequency data transfer mode

SDR mode

0

 

200

MHz

 

Clock duty

SDR mode

30

48

70

ns

TTLH2

Clock rise time

SDR mode

 

0.8

 

ns

TTHL2

Clock fall time

SDR mode

 

0.65

 

ns

TSU2

Input set-up time

SDR mode

 

0.78

 

ns

TIH2

Input hold time

SDR mode

 

4.05

 

ns

TODLY

Output delay time during data transfer mode

SDR mode

 

3.18

 

ns

TOH

Output hold time

SDR mode

 

3.775

 

ns

Note: The default mode timing is covered by high speed mode. SD/SDIO only focuses on duty cycle at 1.8V.

16.5.5.4 SD/SDIO (DDR Mode) Timing Diagram
image-20240422-080458.png
16.5.5.5 SD/SDIO (DDR mode) Timing Diagram

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

 

Clock duty cycle

High Speed (DDR)

45

49.6

55

%

TTLH

Clock rise time

High Speed (DDR)

 

0.84

ns

TTHL

Clock fall time

High Speed (DDR)

 

0.64

ns

TISU

Input set-up time (CMD, SDR)

High Speed (DDR)

14.76

 

ns

TIH

Input hold time (CMD, SDR)

High Speed (DDR)

4.52

ns

TODLY

Output delay time during data transfer (CMD, SDR)

High Speed (DDR)

2.7

ns

ToH

Output hold time (CMD, SDR)

High Speed (DDR)

2.2

ns

TISUddr

Input set-up time (DAT, DDR)

High Speed (DDR)

4.8

ns

TIHddr

Input hold time (DAT, DDR)

High Speed (DDR)

4.24

ns

TODLYddr

Output delay time during data transfer (DAT, DDR)

High Speed (DDR)

7.6

ns

16.5.6 eMMC AC Timing Specification

16.5.6.1 eMMC Timing Diagram

image-20240422-080716.png

16.5.6.2 eMMC (SDR Mode) Timing Parameters

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

FCK2

Clock frequency data transfer mode

SDR mode

0

 

50

MHz

 

Clock duty

SDR mode

30

50.5

70

ns

TTLH2

Clock rise time

SDR mode

 

0.8

 

ns

TTHL2

Clock fall time

SDR mode

 

0.7

 

ns

TSU2

Input set-up time

SDR mode

 

13.4

 

ns

TIH2

Input hold time

SDR mode

 

5.5

 

ns

TODLY

Output delay time during data transfer mode

SDR mode

 

9.6

 

ns

TOH

Output hold time

SDR mode

 

8.6

 

ns

Note: The default mode timing is covered by high speed mode.

16.5.6.3 eMMC (DDR mode) Timing Diagram

image-20240422-080821.png

16.5.6.4 eMMC (DDR mode) Timing Parameters

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

 

Clock duty cycle

High Speed (DDR)

45

50.7

55

%

TWL

Clock low time

High Speed (DDR)

 

9.4

 

ns

TWH

Clock High time

High Speed (DDR)

 

9.2

 

ns

TTLH

Clock rise time

High Speed (DDR)

 

0.8

 

ns

TTHL

Clock fall time

High Speed (DDR)

 

0.7

 

ns

TISU

Input set-up time (CMD, SDR)

High Speed (DDR)

 

14.2

 

ns

TIH

Input hold time (CMD, SDR)

High Speed (DDR)

 

4.2

 

ns

TODLY

Output delay time during data transfer (CMD, SDR)

High Speed (DDR)

 

9.1

 

ns

ToH

Output hold time (CMD, SDR)

High Speed (DDR)

 

8.3

 

ns

tRISE

Signal rise time (CMD, SDR)

High Speed (DDR)

 

0.8

 

ns

Tfall

Signal fall time (CMD, SDR)

High Speed (DDR)

 

0.8

 

ns

TISUddr

Input set-up time (DAT, DDR)

High Speed (DDR)

 

4.5

 

ns

TIHddr

Input hold time (DAT, DDR)

High Speed (DDR)

 

4.5

 

ns

TODLYddr

Output delay time during Data Transfer (DAT, DDR)

High Speed (DDR)

4.5

 

5.8

ns

tRISE

Signal rise time (DAT 0-7)

High Speed (DDR)

 

1.0

 

ns

tFALL

Signal fall time (DAT 0-7)

High Speed (DDR)

 

0.9

 

ns

16.5.7 8-bit NAND AC Timing Specification

16.5.7.1 8-bit NAND (SDR Mode) Timing Diagram — 1

image-20240422-081245.png

16.5.7.2 8-bit NAND (SDR Mode) Timing Parameters — 1

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TCS

CE# setup time

SDR mode

15

16.7

 

ns

TCLS

CLE setup time

SDR mode

10

17.2

 

ns

TCLH

CLE hold time

SDR mode

5

8.2

 

ns

TALS

ALE setup time

SDR mode

10

17.3

 

ns

TALH

ALE hold time

SDR mode

5

8

 

ns

16.5.7.3 8-bit NAND (SDR Mode) Timing Diagram — 2

image-20240422-081533.png

16.5.7.4 8-bit NAND (SDR Mode) Timing Parameters 2

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TDS

Data setup time

SDR mode

7

7.7

 

ns

TDH

Data hold time

SDR mode

5

12.1

 

ns

TWP

WE# pulse width

SDR mode

10

12.2

 

ns

TWH

WE# high hold time

SDR mode

7

7.8

 

ns

TWC

WE# cycle time

SDR mode

20

20

 

ns

16.5.7.5 8-bit NAND (SDR Mode) Timing Diagram 3

image-20240422-081629.png

16.5.7.6 8-bit NAND (SDR Mode) Timing Parameters 3

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TRC

RE# cycle time

SDR mode

20

20.04

 

ns

TRP

RE# pulse width

SDR mode

10

12.38

 

ns

TREH

RE# high hold time

SDR mode

7

7.66

 

ns

TREA

RE# access time

SDR mode

 

8.44

16

ns

TRHOH

RE# high to output hold

SDR mode

15

16.32

 

ns

TRLOH

RE# low to output hold

SDR mode

5

8.44

 

ns

TRR

Ready to RE# low

SDR mode

20

86.07

 

ns

16.5.7.7 8-bit NAND (DDR Mode) Timing Diagram — 1

image-20240422-081741.png

16.5.7.8 8-bit NAND (DDR Mode) Timing Parameters 1

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TCH

CE# hold

DDR mode

3

5.30

 

ns

TCAD

Command, address data delay

DDR mode

25

330

 

ns

TCALH

ALE, CLE, W/R# hold

DDR mode

3

4.60

 

ns

TCALS

ALE, CLE, W/R# setup

DDR mode

3

4.88

 

ns

TCAH

DQ hold – command, address

DDR mode

3

4.87

 

ns

TCK

Average CLK cycle time

DDR mode

15

 

 

ns

TCKL

CLK cycle high

DDR mode

0.43

 

0.57

TCK

TCKH

CLK cycle low

DDR mode

0.43

 

0.57

TCK

16.5.7.9 8-bit NAND (DDR mode) Timing Diagram 2

image-20240422-083155.png

16.5.7.10 8-bit NAND (DDR Mode) Timing Parameters 2

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TDH

Data out hold

DDR mode

1.30

2.92

 

ns

TDS

Data out setup

DDR mode

1.30

2.82

 

ns

TDQSH

DQS output high pulse width

DDR mode

0.40

0.51

0.60

TCK

TDQSL

DQS output low pulse width

DDR mode

0.40

0.49

0.60

TCK

TDQSS

Data output

DDR mode

0.75

1.05

1.25

TCK

16.5.7.11 8-bit NAND (DDR Mode) Timing Diagram 3

image-20240422-083319.png

16.5.7.12 8-bit NAND (DDR Mode) Timing Parameters 3

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TAC

Access window of DQ[7:0] from CLK

DDR mode

3

12.53

20

ns

TDQSCK

Access window of DQS from CLK

DDR mode

 

11.91

20

ns

TDQSD

DQS, DQ[7:0] driven by NAND

DDR mode

 

9.76

18

ns

TDQSQ

DQS-DQ skew

DDR mode

 

0.50

1.3

ns

TWRCK

W/R# low to data output cycle

DDR mode

20

45.03

 

ns

16.5.8 SPI AC Timing Specification

16.5.8.1 SPI Timing Diagram
image-20240422-083854.png
16.5.8.2 SPI MOSI Timing Parameters

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TLS1

Time from CSB (10%) to SCK (90%).

 

 

60.21

 

ns

TLS2

Time from SCK (10%) to CSB 90%).

 

 

39.47

 

ns

TCL

SCK low time.

 

20

19.90

81918

ns

TCH

SCK high time.

 

20

20.11

81918

ns

TSET

Time from changing MOSI (10%, 90%) to SCK (90%).

 

5

21.97

 

ns

THOL

Time from SCK (90%) to changing MOSI (10%, 90%).

 

15

18.32

 

ns

TLH

Time between SPI cycles, CSB at high level (90%).

 

158

 

 

ns

16.5.8.3 SPI MISO Timing Parameters

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

TVAL1

Time from CSB (10%) to stable MISO (10%, 90%).

 

10

11.37

 

ns

TVAL2

Time from SCK (10%) to stable MISO (10%, 90%).

 

 

12.32

15

ns

16.5.9 I2C AC Timing Specification

16.5.9.1 I2C Timing Diagram for Fast and Standard Mode
image-20240422-084024.png
16.5.9.2 I2C Timing parameters for Fast and Standard Mode

Symbol

Parameters

Standard Mode

Fast Mode

Unit

 

 

VDD = 1.8V

 

 

 

MS = 1

 

 

 

100kHz

400kHz

 

FSCL

SCL clock frequency

99.41

396.8

kHz

TLOW

Low period of the SCL clock

5.318

1.548

µs

THIGH

High period of the SCL clock

4.680

0.9117

µs

THD;STA

Hold time (repeated) START condition

4.718

0.9482

µs

TSU;STA

Set-up time for a repeated START condition

5.390

1.020

µs

THD;DAT

Data hold time

2.016

0.00681

µs

TSU;DAT

Data set-up time

3246.0

1454.0

ns

Tr

Rise time of both SDA and SCL signals

CLK = 54.50

DATA = 54.67

CLK = 56.00

DATA = 52.20

ns

Tf

Fall time of both SDA and SCL signals

CLK = 2.182

DATA = 2.628

CLK = 2.267

DATA = 2.328

ns

TSU;STO

Set-up time for STOP condition

4.808

1.040

µs

TVD;DAT

Data valid time

2.072

0.0092

µs

TVD;ACK

Data valid acknowledge time

0.177

0.177

µs

TBUF

Bus free time between a STOP and START condition

29.30

29.07

µs

TSP

Pulse width of spikes that must be suppressed by the input filter

 

 

ns

16.5.9.3 I2C Timing Diagram for High-Speed mode
image-20240422-084143.png
16.5.9.4 I2C Timing Parameters for High-speed Mode

Symbol

Parameters

High Speed Mode

Unit

 

 

VDD = 1.8V

VDD = 3V

 

 

 

MS = 1

MS = 0

 

 

 

1.7MHz

1.7MHz

 

FSCLH

SCLH clock frequency

1.251

1.266

MHz

TLOW

Low period of the SCL clock

437.6

432.7

ns

THIGH

High period of the SCL clock

299.3

293.3

ns

THD;STA

Hold time (repeated) START condition

427.6

425.4

ns

TSU;STA

Set-up time for a repeated START condition

511.7

504.2

ns

THD;DAT

Data hold time

28.03

24.37

ns

TSU;DAT

Data set-up time

354.7

352.6

ns

TrCL

Rise time of SCLH signal

55.33

53.33

ns

TrCL1

Rise time of SCLH signal after a repeated START condition and after an acknowledge bit

55.83

54.92

ns

TfCL

Fall time of SCLH signal

2.491

4.807

ns

TrDA

Rise time of SDAH signal

53.00

52.00

ns

TfDA

Fall time of SDAH signal

2.663

4.833

ns

TSU;STO

Set-up time for STOP condition

493.3

479.4

ns

16.5.10 UART AC Timing Specification

16.5.10.1 UART Timing Diagram for TX
image-20240422-084250.png
16.5.10.2 UART Timing parameter for TX
16.5.10.2.1 UART0,1,2,3

AO

Symbol

Parameter

Conditions

Min.

Typ.

Max.

Unit

1.8V

Ttxd

TXCLK high pulse

BR=115200

8.192

8.681

9.06

µs

Ttxd

TXCLK high pulse

BR=921600

1.025

1.085

1.173

µs

Ttxd

TXCLK high pulse

BR=3000000

0.315

0.331

0.347

µs

3V

Ttxd

TXCLK high pulse

BR=115200

8.192

8.680

9.060

µs

Ttxd

TXCLK high pulse

BR=921600

1.025

1.085

1.173

µs

Ttxd

TXCLK high pulse

BR=3000000

0.315

0.331

0.347

µs

16.5.10.2.2 UART6/7

AO

Symbol

Parameter

Conditions

Min.

Typ.

Max.

Unit

1.8V

Ttxd

TXCLK high pulse

BR=115200

8.192

8.681

9.060

µs

Ttxd

TXCLK high pulse

BR=921600

1.025

1.085

1.173

µs

Ttxd

TXCLK high pulse

BR=3000000

0.315

0.331

0.347

µs

16.5.10.3 UART Timing parameter for RX
image-20240422-084553.png
16.5.10.3.1 UART0,1,2,3

AO

Symbol

Parameter

Conditions

Min.

Typ.

Max.

Unit

1.8V

Trxd

RXCLK high pulse

BR=115200

8.192

8.680

9.06

µs

Trxd

RXCLK high pulse

BR=921600

1.025

1.085

1.173

µs

Trxd

RXCLK high pulse

BR=3000000

0.315

0.331

0.347

µs

3V

Trxd

RXCLK high pulse

BR=115200

8.192

8.680

9.06

µs

Trxd

RXCLK high pulse

BR=921600

1.025

1.085

1.173

µs

Trxd

RXCLK high pulse

BR=3000000

0.315

0.331

0.347

µs

16.5.10.3.2 UART6/7

AO

Symbol

Parameter

Conditions

Min.

Typ.

Max.

Unit

1.8V

Trxd

RXCLK high pulse

BR=115200

8.192

8.680

9.060

µs

Trxd

RXCLK high pulse

BR=921600

1.025

1.085

1.173

µs

Trxd

RXCLK high pulse

BR=3000000

0.315

0.331

0.347

µs

16.5.11 RGMII AC Timing Specification

16.5.11.1 RGMII Timing Diagram for Internal-Delay Mode
image-20240422-085019.png
16.5.11.2 RGMII Timing Parameters for Internal-Delay Mode

Symbol

Parameters

Min.

Typ.

Max.

Unit

 

TXC & RXC frequency

 

 

125

MHz

T1

Clock cycle

7.20

 

8.80

ns

T2

TXD setup Time

1.20

 

 

ns

T3

TXD hold Time

1.20

 

 

ns

T4

RXD setup Time

 

 

 

ns

T5

RXD hold Time

 

 

 

ns

16.5.11.2 RGMII Timing Diagram for No-Internal-Delay Mode
image-20240422-085120.png
16.5.11.3 RGMII Timing Parameters for No-Internal-Delay Mode

Symbol

Parameters

Min.

Typ.

Max.

Unit

 

TXC & RXC frequency

 

 

125

MHz

T1

Clock cycle

7.20

 

8.80

ns

T2

Data to clock output skew

-500

 

+500

ps

T3

Data to clock input skew[1]

-0.6

 

1.90

ns

Note: This implies that PC board design requires clocks to have no routing delay and the output skew from PHY could be ±500 ps.

16.5.12 RMII AC Timing Specification

16.5.12.1 RMII Timing Diagram

image-20240422-085225.png

16.5.12.2 RMII Timing Parameters

Symbol

Parameters

Min.

Typ.

Max.

Unit

T1

RMII clock period

 

20

 

ns

 

RMII clock duty cycle

35

 

65

%

T2

TX_Data, TX_EN setup to RMII clock rising

4

 

 

ns

T3

TX_Data, TX_EN hold from RMII clock rising

2

 

 

ns

T4

RXD, CRSDV setup time

2

 

 

ns

T5

RXD, CRSDV hold time

2

 

 

ns

16.6 Power Consumption

Symbol

Parameters

Conditions

Min.

Typ.

Max.

Unit

I08

I1.1

I1.8

I3.0

I3.3

0.8V supply current

1.1V supply current

1.8V supply current

3.0V supply current

3.3V supply current

Chip leakage is 182 mA @0.8V

including:

CA55 @1.8GHz,

NPU @900MHz with 0.85V

 

2675

280

42.5

65.5

199.5

4243

285

44.7

67

213.5

mA

mA

mA

mA

mA

Power Dissipation

3.38

4.69

W

Note: The power consumption is based on a chip with leakage current equals to 182 mA.

Note: The NPU and CA55 power is based on 0.85V.

Note: The test condition is defined by Vendor.

Note: The TJ is -30℃ to 125℃

17. Ball Map

image-20240313-025928.png

18. Ball Definition

18.1 Terminologies

Terminologies in the Ball Assignment Table:

  • AO: Always-On power domain

  • UA: UART

18.2 Ball Assignment

Ball No.

Ball Name

Function Type

A2

BP_A[30]

DRAM address and command

A4

BP_A[27]

DRAM address and command

A6

BP_A[25]

DRAM address and command

A8

BP_A[21]

DRAM address and command

A10

BP_A[17]

DRAM address and command

A12

BP_A[4]

DRAM address and command

A14

BP_A[15]

DRAM address and command

A16

BP_A[12]

DRAM address and command

A18

BP_A[9]

DRAM address and command

A20

BP_A[6]

DRAM address and command

A22

BP_D[14]

DRAM data and strobe

A23

BP_D[13]

DRAM data and strobe

A25

BP_D[22]

DRAM data and strobe

A27

BP_D[20]

DRAM data and strobe

A29

BP_D[17]

DRAM data and strobe

A31

AO_MX28

GPIO, PWM0, UA2 in AO domain

A33

AO_MX25

GPIO, SPI4, SPI5 in AO domain

A35

AO_MX23

GPIO, SPI4, SPI5 in AO domain

B1

BP_A[33]

DRAM address and command

B2

BP_A[31]

DRAM address and command

B3

BP_A[29]

DRAM address and command

B4

BP_A[28]

DRAM address and command

B5

BP_A[26]

DRAM address and command

B6

GND

GND

B7

BP_A[24]

DRAM address and command

B8

GND

GND

B9

BP_A[20]

DRAM address and command

B10

GND

GND

B11

BP_A[16]

DRAM address and command

B12

GND

GND

B13

BP_A[5]

DRAM address and command

B14

GND

GND

B15

BP_A[14]

DRAM address and command

B16

BP_A[13]

DRAM address and command

B17

BP_A[11]

DRAM address and command

B18

BP_A[10]

DRAM address and command

B19

BP_A[8]

DRAM address and command

B20

BP_A[7]

DRAM address and command

B21

GND

GND

B22

BP_D[15]

DRAM data and strobe

B23

BP_D[12]

DRAM data and strobe

B24

GND

GND

B25

BP_D[21]

DRAM data and strobe

B26

GND

GND

B27

BP_D[19]

DRAM data and strobe

B28

BP_D[18]

DRAM data and strobe

B29

BP_D[16]

DRAM data and strobe

B30

GND

GND

B31

AO_MX29

GPIO, PWM1 or UA2 in AO domain

B32

AO_MX26

GPIO, I2C2 or UA2 in AO domain

B33

AO_MX27

GPIO, I2C2 or UA2 in AO domain

B34

AO_MX24

GPIO, SPI4 or SPI5 in AO domain

B35

AO_MX22

GPIO, SPI4 or SPI5 in AO domain

B36

AO_MX20

GPIO or I2C1 in AO domain

B37

AO_MX21

GPIO or I2C1 in AO domain

C2

BP_A[32]

DRAM address and command

C36

AO_MX18

GPIO, I2C0 or UA0 in AO domain

D1

BP_A[35]

DRAM address and command

D2

BP_A[34]

DRAM address and command

D36

AO_MX17

GPIO, SPI0 or UA1 in AO domain

D37

AO_MX16

GPIO, SPI0 or UA1 in AO domain

E2

GND

GND

E36

AO_MX15

GPIO, SPI0 or UA1 in AO domain

F1

BP_D[38]

DRAM data and strobe

F2

BP_D[39]

DRAM data and strobe

F36

AO_MX13

GPIO or UA3 in AO domain

F37

AO_MX12

GPIO or UA3 in AO domain

G2

BP_D[37]

DRAM data and strobe

G36

AO_MX11

GPIO or PWM3 in AO domain

H1

BP_D[44]

DRAM data and strobe

H2

BP_D[36]

DRAM data and strobe

H36

AO_MX10

GPIO or PWM2 in AO domain

H37

AO_MX9

GPIO, UA2 or PWM1 in AO domain

J2

GND

GND

J36

AO_MX8

GPIO, UA2 or PWM0 in AO domain

K1

BP_D[46]

DRAM data and strobe

K2

BP_D[45]

DRAM data and strobe

K36

AO_MX7

GPIO, UA2 or I2C2 in AO domain

K37

AO_MX30

GPIO, UA6 or SPI1 in AO domain

L2

GND

GND

L36

AO_MX33

GPIO, UA7 or SPI1 in AO domain

M1

BP_D[42]

DRAM data and strobe

M2

BP_D[43]

DRAM data and strobe

M36

AO_MX31

GPIO, or UA6 or SPI1 in AO domain

M37

AO_MX35

GPIO or I2C6 in AO domain

N1

BP_D[41]

DRAM data and strobe

N2

BP_D[40]

DRAM data and strobe

N36

AO_MX34

GPIO or I2C6 in AO domain

P2

GND

GND

P36

AO_MX44

GPIO or SPI5 in AO domain

P37

AO_MX46

GPIO, I2C8 or SPI5 in AO domain

R1

MIPITX_OUTN0

MIPI TX

R2

MIPITX_OUTP0

MIPI TX

R36

AO_MX45

GPIO, I2C8 or SPI5 in AO domain

T2

MIPITX_AVSS

Analog GND to MIPI TX

T36

AO_MX39

GPIO, I2C3 or SPI2 in AO domain

T37

AO_MX40

GPIO, I2C4 or SPI2 in AO domain

U1

MIPITX_OUTP1

MIPI TX

U2

MIPITX_OUTN1

MIPI TX

U36

AO_MX37

GPIO or I2C7 in AO domain

V1

MIPITX_CLKN

MIPI TX

V2

MIPITX_CLKP

MIPI TX

V36

AO_MX36

GPIO or I2C7 in AO domain

V37

AO_MX38

GPIO, I2C3 or SPI2 in AO domain

W2

MIPITX_AVSS

Analog GND to MIPI TX

W36

X32K_AVSS

Analog GND to 32K crystal

Y1

MIPITX_OUTN2

MIPI TX

Y2

MIPITX_OUTP2

MIPI TX

Y36

X32KI

32.768kHz crystal in

Y37

X32KO

32.768kHz crystal out

AA2

MIPITX_AVSS

Analog GND to MIPI TX

AA36

X32K_AVSS

Analog GND to 32K crystal

AB1

MIPITX_OUTP3

MIPI TX

AB2

MIPITX_OUTN3

MIPI TX

AB36

SAR12B_AVSS

Analog GND to SAR ADC

AC2

MIPI4_AVSS

Analog GND to MIPI #4

AC36

SAR12B_ADI0

ADC input #0

AC37

SAR12B_ADI1

ADC input #1

AD1

MIPI4_DP[1]

MIPI RX #4

AD2

MIPI4_DN[1]

MIPI RX #4

AD36

SAR12B_ADI3

ADC input #3

AD37

SAR12B_ADI2

ADC input #2

AE1

MIPI4_SN

MIPI RX #4

AE2

MIPI4_SP

MIPI RX #4

AE36

SAR12B_AVSS

Analog GND to SAR ADC

AF2

MIPI4_AVSS

Analog GND to MIPI #4

AF36

XTAL_AVSS

Analog GND 25M crystal

AG1

MIPI4_DP[0]

MIPI RX #4

AG2

MIPI4_DN[0]

MIPI RX #4

AG36

XIN

25MHz Crystal in

AG37

XOUT

25MHz Crystal out

AH2

MIPI4_AVSS

Analog GND to MIPI #4

AH36

XTAL_AVSS

Analog GND to 25M crystal

AJ1

USB3_DM

USB3

AJ2

USB3_DP

USB3

AJ36

CPIOR_AVSS

Analog GND to CPIO

AK2

GND

GND

AK36

CPIOR-eRXD3P/MIPIRX2_DN3

CPIO or MIPI RX #2

AK37

CPIOR-eRXD3N/MIPIRX2_DP3

CPIO or MIPI RX #2

AL1

USB3_REFCLK_M

USB3 reference clock input, connect to GND

AL2

USB3_REFCLK_P

USB3 reference clock input, connect to GND

AL36

CPIOR-eTXD3P/MIPIRX2_DP1

CPIO or MIPI RX #2

AL37

CPIOR-eTXD3N/MIPIRX2_DN1

CPIO or MIPI RX #2

AM2

GND

GND

AM36

CPIOR_AVSS

Analog GND to CPIO

AN1

USB3_RX0P

USB3

AN2

USB3_RX0M

USB3

AN36

CPIOR-eTXD2N/MIPIRX2_CP

CPIO or MIPI RX #2

AN37

CPIOR-eTXD2P/MIPIRX2_CN

CPIO or MIPI RX #2

AP2

GND

GND

AP36

CPIOR-eRXD2N/MIPIRX2_DN0

CPIO or MIPI RX #2

AP37

CPIOR-eRXD2P/MIPIRX2_DP0

CPIO or MIPI RX #2

AR1

USB3_TX0P

USB3

AR2

USB3_TX0M

USB3

AR36

CPIOR_AVSS

Analog GND to CPIO

AT2

GND

GND

AT3

USB3_RX1M

USB3

AT4

GND

GND

AT5

USB3_TX1M

USB3

AT6

GND

GND

AT7

G_MX16

GPIO, Ethernet MAC or SPI1

AT8

G_MX15

GPIO, Ethernet MAC or SPI1

AT9

G_MX13

GPIO, Ethernet MAC or UADBG

AT10

G_MX10

GPIO, Ethernet MAC, SPI0 or I2C8

AT11

G_MX8

GPIO, Ethernet MAC or UA3

AT12

G_MX3

GPIO, Ethernet MAC or I2C7

AT13

G_MX42

GPIO or SD card

AT14

G_MX38

GPIO or SD card

AT15

G_MX39

GPIO or SD card

AT16

G_MX41

GPIO or SD card

AT17

G_MX45

GPIO, SDIO or SPI3

AT18

G_MX46

GPIO, SDIO or SPI3

AT19

G_MX48

GPIO, SDIO or UA6

AT20

G_MX49

GPIO, SDIO or UA6

AT21

G_MX28

GPIO, eMMC or 8-bit NAND

AT22

G_MX30

GPIO, eMMC, SPI-NAND or 8-bit NAND

AT23

G_MX37

GPIO or eMMC

AT24

G_MX36

GPIO, eMMC or 8-bit NAND

AT25

G_MX31

GPIO, eMMC, SPI-NAND or 8-bit NAND

AT26

G_MX32

GPIO, eMMC, SPI-NAND or 8-bit NAND

AT27

G_MX33

GPIO, eMMC, SPI-NAND or 8-bit NAND

AT28

CPIOR_AVSS

Analog GND to CPIO

AT29

CPIOR-eTXD0P

CPIO

AT30

CPIOR-eRXD0P/MIPIRX3_DN0

CPIO or MIPI RX #3

AT31

CPIOR_AVSS

Analog GND to CPIO

AT32

CPIOR-eRXD1N/MIPIRX3_CN

CPIO or MIPI RX #3

AT33

CPIOR-eTXD1N/MIPIRX3_DP1

CPIO or MIPI RX #3

AT34

CPIOR_AVSS

Analog GND to CPIO

AT35

CPIOR-eTXCP

CPIO

AT36

CPIOR-eRXCP/MIPIRX2_DN2

CPIO or MIPI RX #2

AT37

CPIOR_AVSS

Analog GND to CPIO

AU3

USB3_RX1P

USB3

AU5

USB3_TX1P

USB3

AU7

G_MX17

GPIO or SPI1

AU9

G_MX14

GPIO, Ethernet MAC, UADBG or SPI1

AU11

G_MX7

GPIO, Ethernet MAC or UA3

AU13

G_MX43

GPIO or SD card

AU15

G_MX40

GPIO or SD card

AU17

G_MX44

GPIO, SDIO or SPI3

AU19

G_MX47

GPIO, SDIO or SPI3

AU21

G_MX29

GPIO, eMMC or 8-bit NAND

AU23

G_MX20

GPIO, eMMC or 8-bit NAND

AU25

G_MX35

GPIO, eMMC, SPI-NAND or 8-bit NAND

AU27

G_MX34

GPIO, eMMC, SPI-NAND or 8-bit NAND

AU29

CPIOR-eTXD0N

CPIO

AU30

CPIOR-eRXD0N/MIPIRX3_DP0

CPIO or MIPI RX #3

AU32

CPIOR-eRXD1P/MIPIRX3_CP

CPIO or MIPI RX #3

AU33

CPIOR-eTXD1P/MIPIRX3_DN1

CPIO or MIPI RX #3

AU35

CPIOR-eTXCN

CPIO

AU36

CPIOR-eRXCN/MIPIRX2_DP2

CPIO or MIPI RX #2

AV1

BP_D[30]

DRAM data and strobe

AV2

BP_D[29]

DRAM data and strobe

AV3

GND

GND

AV4

BP_A[37]

DRAM address and command

AV6

BP_A[36]

DRAM address and command

AV7

BP_MEMRESET_L

DRAM Reset

AV9

BP_A[3]

DRAM address and command

AV10

BP_A[1]

DRAM address and command

AV12

GND

GND

AV13

BP_D[8]

DRAM data and strobe

AV15

GND

GND

AV16

BP_D[0]

DRAM data and strobe

AV17

BP_D[2]

DRAM data and strobe

AV18

GND

GND

AV19

VDDPST3018_DVIO_AO_3

3.2V or 1.8V supply for DVIO_AO_3 Group in AO domain

AV20

AO_MX19

GPIO, I2C0 or UA0 in AO domain

AW1

BP_D[31]

DRAM data and strobe

AW2

GND

GND

AW3

BP_D[28]

DRAM data and strobe

AW4

BP_A[38]

DRAM address and command

AW6

BP_A[22]

DRAM address and command

AW7

BP_ZN

DRAM reference resistor

AW9

BP_A[18]

DRAM address and command

AW10

BP_A[2]

DRAM address and command

AW12

BP_D[4]

DRAM data and strobe

AW13

BP_D[7]

DRAM data and strobe

AW15

BP_D[9]

DRAM data and strobe

AW16

BP_D[1]

DRAM data and strobe

AW17

BP_D[3]

DRAM data and strobe

AW18

GND

GND

AW19

VDDPST18_DVIO_AO_3

Connect to bypass capacitors

AW20

AO_MX14

GPIO, SPI0 or UA1 in AO domain

AY1

BP_D[33]

DRAM data and strobe

AY2

BP_D[34]

DRAM data and strobe

AY3

GND

GND

AY4

BP_A[23]

DRAM address and command

AY6

BP_VAA

1.8V analog supply to DDRPHY PLL

AY7

BP_ALERT_N

DRAM alert output

AY9

BP_VREF

DRAM VREF output

AY10

BP_A[0]

DRAM address and command

AY12

BP_D[5]

DRAM data and strobe

AY13

BP_D[6]

DRAM data and strobe

AY15

BP_D[10]

DRAM data and strobe

AY16

GND

GND

AY17

VDDPST18_DVIO_AO_2

Connect to bypass capacitors

AY18

VDDPST3018_DVIO_AO_2

3.2V or 1.8V supply for DVIO_AO_2 Group in AO domain

AY19

AO_MX1

GPIO or UA0 in AO domain

AY20

AO_MX5

GPIO, UA1, I2C0 or SPI3 in AO domain

BA1

GND

GND

BA2

BP_D[32]

DRAM data and strobe

BA3

GND

GND

BA4

GND

GND

BA5

GND

GND

BA6

GND

GND

BA7

GND

GND

BA8

GND

GND

BA9

GND

GND

BA10

GND

GND

BA11

GND

GND

BA12

GND

GND

BA13

GND

GND

BA14

GND

GND

BA15

GND

GND

BA16

DRAM_VDDQ

Supply to DRAM data and strobe pin

BA17

VDDPST18_DVIO_AO_1

Connect to bypass capacitors

BA18

VDDPST3018_DVIO_AO_1

3.2V or 1.8V supply for DVIO_AO_1 Group in AO domain

BA19

AO_MX4

GPIO, UA1, I2C0 or SPI3 in AO domain

BA20

AO_MX6

GPIO, UA2 or I2C2 in AO domain

BB1

BP_D[25]

DRAM data and strobe

BB2

BP_D[24]

DRAM data and strobe

BB3

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB4

GND

GND

BB5

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB6

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB7

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB8

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB9

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB10

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB11

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB12

GND

GND

BB13

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB14

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB15

DRAM_VDDQ

Supply to DRAM data and strobe pin

BB16

OTP_1V8

1.8V supply to write OTP

BB17

AO_MX0

GPIO or UA0 in AO domain

BB18

AO_MX3

GPIO, UA1 or SPI3 in AO domain

BB19

GND

GND

BB20

AO_MX2

GPIO, UA1 or SPI3 in AO domain

BC4

DRAM_VDDQ

Supply to DRAM data and strobe pin

BC5

DRAM_VDDQ

Supply to DRAM data and strobe pin

BC6

GND

GND

BC7

GND

GND

BC8

GND

GND

BC9

DRAM_VDDQ

Supply to DRAM data and strobe pin

BC10

GND

GND

BC11

DRAM_VDD

0.8V supply to DRAM digital core

BC12

DRAM_VDD

0.8V supply to DRAM digital core

BC13

DRAM_VDD

0.8V supply to DRAM digital core

BC14

GND

GND

BC15

GND

GND

BD1

GND

GND

BD2

BP_D[26]

DRAM data and strobe

BD3

BP_D[27]

DRAM data and strobe

BD4

GND

GND

BD5

DRAM_VDD

0.8V supply to DRAM digital core

BD6

DRAM_VDD

0.8V supply to DRAM digital core

BD7

DRAM_VDD

0.8V supply to DRAM digital core

BD8

GND

GND

BD9

DRAM_VDD

0.8V supply to DRAM digital core

BD10

DRAM_VDD

0.8V supply to DRAM digital core

BD11

GND

GND

BD12

GND

GND

BD13

GND

GND

BD14

GND

GND

BD15

VDDPST18_GPIO_AO

1.8V supply for GP1 and GP2 groups in AO domain

BD16

VDDPST18_GPIO_AO

1.8V supply for GP1 and GP2 groups in AO domain

BD17

AO_MX47

GPIO, I2C9 or SPI5 in AO domain

BD18

AO_MX48

GPIO or I2C9 AO domain

BD19

GND

GND

BD20

AO_MX32

GPIO, UA7 or SPI1 in AO domain

BE1

MIPITX_AVDD18

1.8V analog supply to MIPI TX

BE2

MIPITX_AVSS

Analog GND to MIPI TX

BE5

GND

GND

BE6

GND

GND

BE7

GND

GND

BE8

GND

GND

BE9

GND

GND

BE10

GND

GND

BE11

GND

GND

BE12

VDD_BLOCKA

0.8V supply to video codec

BE13

VDD_BLOCKA

0.8V supply to video codec

BE14

GND

GND

BE15

VDD_AO

0.8V supply to AO digital core

BE16

VDD_AO

0.8V supply to AO digital core

BE17

AO_MX41

GPIO, I2C4 or SPI2 in AO domain

BE18

AO_MX42

GPIO, I2C5 or PWM2 in AO domain

BE19

GND

GND

BE20

AO_MX43

GPIO, I2C5 or PWM3 in AO domain

BF1

MIPI5_DP[3]

MIPI RX #5

BF2

MIPI5_DN[3]

MIPI RX #5

BF3

MIPI5_DP[1]

MIPI RX #5

BF4

MIPI5_DN[1]

MIPI RX #5

BF6

VDD_NPU_MEASURE

VDD_NPU for feedback

BF7

VDD_NPU

0.8V supply to NPU

BF8

VDD_NPU

0.8V supply to NPU

BF9

GND

GND

BF10

VDD

0.8V supply to digital core

BF11

GND

GND

BF12

VDD_BLOCKA

0.8V supply to video codec

BF13

VDD_BLOCKA

0.8V supply to video codec

BF14

GND

GND

BG6

GND

GND

BG7

VDD_NPU

0.8V supply to NPU

BG8

GND

GND

BG9

VDD

0.8V supply to digital core

BG10

VDD

0.8V supply to digital core

BG11

VDD_BLOCKA

0.8V supply to video codec

BG12

VDD_BLOCKA

0.8V supply to video codec

BG13

VDD_BLOCKA

0.8V supply to video codec

BG14

VDD_BLOCKA

0.8V supply to video codec

BG15

GND

GND

BG16

IV_MX2

GPIO, Boot-configuration pin #2

BG17

IV_MX1

GPIO, Boot-configuration pin #1

BG18

IV_MX3

GPIO, Boot-configuration pin #3

BG19

GND

GND

BG20

IV_MX5

GPIO, Boot-configuration pin #5

BH1

MIPI5_SN

MIPI RX #5

BH2

MIPI5_SP

MIPI RX #5

BH3

MIPI5_AVDD08

0.8V analog supply to MIPI #5

BH4

MIPI5_AVSS

Analog GND to MIPI #5

BH6

GND

GND

BH7

VDD_NPU

0.8V supply to NPU

BH8

VDD_NPU

0.8V supply to NPU

BH9

GND

GND

BH10

VDD

0.8V supply to digital core

BH11

VDD

0.8V supply to digital core

BH12

GND

GND

BH13

VDD_BLOCKA

0.8V supply to video codec

BH14

VDD_BLOCKA

0.8V supply to video codec

BH15

GND

GND

BH16

GND

GND

BH17

GND

GND

BH18

IV_MX6

GPIO, Boot-configuration pin #6

BH19

GND

GND

BH20

IV_MX4

GPIO, Boot-configuration pin #4

BJ1

MIPI5_DP[0]

MIPI RX #5

BJ2

MIPI5_DN[0]

MIPI RX #5

BJ3

MIPI5_AVDD18

1.8V analog supply to MIPI #5

BJ4

MIPI5_AVSS

Analog GND to MIPI #5

BJ6

GND

GND

BJ7

VDD_NPU

0.8V supply to NPU

BJ8

VDD_NPU

0.8V supply to NPU

BJ9

GND

GND

BJ10

VDD

0.8V supply to digital core

BJ11

GND

GND

BJ12

VDD_CA55

0.7 ~ 1.0V supply to CA55

BJ13

GND

GND

BJ14

GND

GND

BJ15

GND

GND

BJ16

VDD_RTC

Connect to bypass capacitors

BJ18

CM4_PWR_EN

CM4 power enable

BJ19

CM4_WAKEUP_KEY

CM4 wake-up key (high active)

BJ20

IV_MX0

GPIO, Boot-configuration pin #0

BK6

GND

GND

BK7

VDD_NPU

0.8V supply to NPU

BK8

VDD_NPU

0.8V supply to NPU

BK9

GND

GND

BK10

VDD

0.8V supply to digital core

BK11

VDD_CA55

0.7 ~ 1.0V supply to CA55

BK12

VDD_CA55

0.7 ~ 1.0V supply to CA55

BK13

VDD_CA55

0.7 ~ 1.0V supply to CA55

BK14

VDD_CA55

0.7 ~ 1.0V supply to CA55

BK16

VDDPST18_GPIO_RTC

1.8V supply to RTC

BK17

RESET_B

Reset

BK19

X32K_AVSS

Analog GND to 32K crystal

BK20

X32K_AVDD18

1.8V analog supply to 32K crystal

BL1

MIPI5_DN[2]

MIPI RX #5

BL2

MIPI5_DP[2]

MIPI RX #5

BL3

MIPI5_AVSS

Analog GND to MIPI #5

BL5

GND

GND

BL6

VDD

0.8V supply to digital core

BL7

VDD

0.8V supply to digital core

BL8

VDD

0.8V supply to digital core

BL9

VDD

0.8V supply to digital core

BL10

GND

GND

BL11

VDD_CA55

0.7 ~ 1.0V supply to CA55

BL12

VDD_CA55

0.7 ~ 1.0V supply to CA55

BL13

VDD_CA55

0.7 ~ 1.0V supply to CA55

BL14

VDD_CA55

0.7 ~ 1.0V supply to CA55

BL16

GND

GND

BL20

SAR12B_AVDD18

1.8V analog supply to ADC

BM1

MIPI4_AVDD18

1.8V analog supply to MIPI #4

BM2

MIPI4_AVDD08

0.8V analog supply to MIPI #4

BM3

MIPI4_AVSS

Analog GND to MIPI #4

BM6

GND

GND

BM7

GND

GND

BM9

GND

GND

BM10

GND

GND

BM11

GND

GND

BM12

GND

GND

BM13

GND

GND

BM14

GND

GND

BM20

SAR12B_AVSS

Analog GND to SAR ADC

BN1

USB3_VBUS

USB3 VBUS input

BN2

USB3_RESREF

USB3 reference resistor

BN3

USB3_DVDD08

0.8V supply to USB3 digital core

BN4

GND

GND

BN7

VDDPST18_GPIO_1

1.8V supply for GPIO 1 group

BN9

VDDPST18IO_SD

Connect to bypass capacitors

BN10

VDDPST18_SD

Connect to bypass capacitors

BN12

TML_AVDD18

1.8V analog supply for thermal sensor

BN13

VDDPST18_DVIO_1

Connect to bypass capacitors

BN15

VDDPST18_DVIO_2

Connect to bypass capacitors

BN16

GND

GND

BN18

AVSS_PLLS

Analog GND to PLLS

BN19

AVDD08_PLLS

0.8V analog supply to PLLS

BP1

USB3_ID

USB3

BP2

USB3_VDD33

3.3V supply to USB3

BP3

USB3_AVDD08

0.8V analog supply to USB3

BP4

GND

GND

BP6

G_MX12

GPIO, Ethernet MAC SPI0 or I2C9

BP7

G_MX5

GPIO or Ethernet MAC

BP9

GND

GND

BP10

AVDDIO_3018_SD

3.2V or 1.8V power output for SD card

BP12

VDDPST3018_DVIO_1

3.2V or 1.8V supply for DVIO_1 group

BP13

G_MX25

GPIO or SPI NOR, SPI NAND or Parallel NAND

BP15

VDDPST3018_DVIO_2

3.2V or 1.8V supply for DVIO_2 group

BP16

VDDPST18_GPIO_0

Connect to bypass capacitors

BP18

AVSS_PLLD

Analog GND to PLLD

BP19

AVDD08_PLLD

0.8V analog supply to PLLD

BR1

USB20_AVDD18

1.8V analog supply to USB2

BR2

USB20_AVDD33

3.3V analog supply to USB2

BR3

GND

GND

BR4

GND

GND

BR6

G_MX11

GPIO, Ethernet MAC SPI0 or I2C9

BR7

G_MX6

GPIO or Ethernet MAC

BR9

AVDDIO_3018_SDIO

3.2V or 1.8V power output for SDIO

BR10

VDDPST18_SDIO

Connect to bypass capacitors

BR12

G_MX27

GPIO or Parallel NAND

BR13

G_MX23

GPIO, SPI NOR, SPI NAND or Parallel NAND

BR15

G_MX22

GPIO, SPI NOR, SPI NAND or Parallel NAND

BR16

G_MX0

GPIO or Ethernet MAC

BR18

AVSS_PLLC

Analog GND to PLLC

BR19

AVDD08_PLLC

0.8V analog supply to PLLC

BR20

CPIOR-eCHRDY_I

CPIO

BT1

USB20_DP

USB2

BT2

USB20_DM

USB2

BT3

GND

GND

BT4

G_MX19

GPIO or USB2 ID input

BT6

GND

GND

BT7

GND

GND

BT9

GND

GND

BT10

GND

GND

BT12

GND

GND

BT13

GND

GND

BT15

GND

GND

BT16

G_MX1

GPIO or I2C6

BT18

CPIOR_AVSS

Analog GND to CPIO

BT19

CPIOR_AVDD18

1.8V analog supply to CPIO

BT20

CPIOR-eRESET

CPIO

BU1

USB20_VBUS

USB2

BU2

USB20_R_TEST

Leave open

BU3

GND

GND

BU4

G_MX18

GPIO or USB2 DRV5ENB output

BU6

G_MX9

GPIO, Ethernet MAC SPI0 or I2C8

BU7

G_MX4

GPIO, Ethernet MAC or I2C7

BU9

AVDD30_SD_SDIO

3.2V analog supply to SDIO

BU10

VDDPST18IO_SDIO

Connect to bypass capacitors

BU12

G_MX26

GPIO, SPI-NOR, SPI-NAND or 8-bit NAND

BU13

G_MX24

GPIO, SPI-NOR, SPI-NAND or 8-bit NAND

BU15

G_MX21

GPIO, SPI-NOR, SPI-NAND or 8-bit NAND

BU16

G_MX2

GPIO or I2C6

BU18

CPIOR_AVSS

Analog GND to CPIO

BU19

CPIOR_AVDD08

0.8V analog supply to CPIO

BU20

CPIOR-eCHRDY_O

CPIO

18.3 Signal Wiring for LPDDR4, DDR4, LPDDR3, DDR3 SDRAM

18.3.1 Data and Strobe Ssignals

 

Ball Name

LPDDR4

DDR4

LPDDR3

DDR3

DBYTE-0

BP_D[0]

DQA0

DQ0

DQA0

DQ0

BP_D[1]

DQA1

DQ1

DQA1

DQ1

BP_D[2]

DQA2

DQ2

DQA2

DQ2

BP_D[3]

DQA3

DQ3

DQA3

DQ3

BP_D[4]

DQA4

DQ4

DQA4

DQ4

BP_D[5]

DQA5

DQ5

DQA5

DQ5

BP_D[6]

DQA6

DQ6

DQA6

DQ6

BP_D[7]

DQA7

DQ7

DQA7

DQ7

BP_D[8]

DMA0/DBIA[0]

DM0/DBI[0]

DMA0

DM0

BP_D[9]

DQSA_T[0]

DQS_T[0]

DQSA_T[0]

DQS_T[0]

BP_D[10]

DQSA_C[0]

DQS_C[0]

DQSA_C[0]

DQS_C[0]

BP_D[11]

 

 

 

 

DBYTE-1

BP_D[12]

DQA8

DQ8

DQA8

DQ8

BP_D[13]

DQA9

DQ9

DQA9

DQ9

BP_D[14]

DQA10

DQ10

DQA10

DQ10

BP_D[15]

DQA11

DQ11

DQA11

DQ11

BP_D[16]

DQA12

DQ12

DQA12

DQ12

BP_D[17]

DQA13

DQ13

DQA13

DQ13

BP_D[18]

DQA14

DQ14

DQA14

DQ14

BP_D[19]

DQA15

DQ15

DQA15

DQ15

BP_D[20]

DMA1/DBIA[1]

DM1/DBI[1]

DMA1

DM1

BP_D[21]

DQSA_T[1]

DQS_T[1]

DQSA_T[1]

DQS_T[1]

BP_D[22]

DQSA_C[1]

DQS_C[1]

DQSA_C[1]

DQS_C[1]

BP_D[23]

 

 

 

 

DBYTE-2

BP_D[24]

DQB0

DQ16

DQB0

DQ16

BP_D[25]

DQB1

DQ17

DQB1

DQ17

BP_D[26]

DQB2

DQ18

DQB2

DQ18

BP_D[27]

DQB3

DQ19

DQB3

DQ19

BP_D[28]

DQB4

DQ20

DQB4

DQ20

BP_D[29]

DQB5

DQ21

DQB5

DQ21

BP_D[30]

DQB6

DQ22

DQB6

DQ22

BP_D[31]

DQB7

DQ23

DQB7

DQ23

BP_D[32]

DMB0/DBIB[0]

DM2/DBI[2]

DMB0

DM2

BP_D[33]

DQSB_T[0]

DQS_T[2]

DQSB_T[0]

DQS_T[2]

BP_D[34]

DQSB_C[0]

DQS_C[2]

DQSB_C[0]

DQS_C[2]

BP_D[35]

 

 

 

 

DBYTE-3

BP_D[36]

DQB8

DQ24

DQB8

DQ24

BP_D[37]

DQB9

DQ25

DQB9

DQ25

BP_D[38]

DQB10

DQ26

DQB10

DQ26

BP_D[39]

DQB11

DQ27

DQB11

DQ27

BP_D[40]

DQB12

DQ28

DQB12

DQ28

BP_D[41]

DQB13

DQ29

DQB13

DQ29

BP_D[42]

DQB14

DQ30

DQB14

DQ30

BP_D[43]

DQB15

DQ31

DQB15

DQ31

BP_D[44]

DMB1/DBIB[1]

DM3/DBI[3]

DMB1

DM3

BP_D[45]

DQSB_T[1]

DQS_T[3]

DQSB_T[1]

DQS_T[3]

BP_D[46]

DQSB_C[1]

DQS_C[3]

DQSB_C[1]

DQS_C[3]

BP_D[47]

 

 

 

 

18.3.2 Address and Command

 

Ball Name

LPDDR4

DDR4

LPDDR3

DDR3

Master

BP_MEMRESET_L

RESET_N

RESET_N

 

RESET_N

BP_ALERT_N

 

ALERT_N

 

 

ACX4-0

BP_A[0]

CKEA0

CKE0

CKEA0

CKE0

BP_A[1]

CKEA1

CKE1

CKEA1

CKE1

BP_A[2]

CSA0

CS_N0

CSA0

CS_N0

BP_A[3]

CSA1

C0

CSA1

 

ACX4-1

BP_A[4]

CLKA_T

BG0

CLKA_T

BA2

BP_A[5]

CLKA_C

BG1

CLKA_C

A14

BP_A[6]

 

ACT_N

 

A15

BP_A[7]

 

A9

 

A9

ACX4-2

BP_A[8]

CAA0

A12

CAA0

A12

BP_A[9]

CAA1

A11

CAA1

A11

BP_A[10]

CAA2

A7

CAA2

A7

BP_A[11]

CAA3

A8

CAA3

A8

ACX4-3

BP_A[12]

CAA4

A6

CAA4

A6

BP_A[13]

CAA5

A5

CAA5

A5

BP_A[14]

 

A4

CAA6

A4

BP_A[15]

 

A3

CAA7

A3

ACX4-4

BP_A[16]

 

CLK0_T

CAA8

CLK0_T

BP_A[17]

 

CLK0_C

CAA9

CLK0_C

BP_A[18]

 

 

ODTA

 

BP_A[19]

 

 

 

 

ACX4-5

BP_A[20]

CKEB0

CLK1_T

CKEB0

CLK1_T

BP_A[21]

CKEB1

CLK1_C

CKEB1

CLK1_C

BP_A[22]

CSB1

 

CSB1

 

BP_A[23]

CSB0

 

CSB0

 

ACX4-6

BP_A[24]

CLKB_T

A2

CLKB_T

A2

BP_A[25]

CLKB_C

A1

CLKB_C

A1

BP_A[26]

 

BA1

 

BA1

BP_A[27]

 

PAR

 

PAR

ACX4-7

BP_A[28]

CAB0

A13

CAB0

A13

BP_A[29]

CAB1

BA0

CAB1

BA0

BP_A[30]

CAB2

A10

CAB2

A10

BP_A[31]

CAB3

A0

CAB3

A0

ACX4-8

BP_A[32]

CAB4

C2

CAB4

 

BP_A[33]

CAB5

CAS_N

CAB5

CAS_N

BP_A[34]

 

WE_N

CAB6

WE_N

BP_A[35]

 

RAS_N

CAB7

RAS_N

ACX4-9

BP_A[36]

 

ODT0

CAB8

ODT0

BP_A[37]

 

ODT1

CAB9

ODT1

BP_A[38]

 

CS_N1

ODTB

CS_N1

BP_A[39]

 

C1

 

 

19. Package Dimension

19.1 15mm x 15mm FCCSP Package Dimension

image-20240325-155134.png

image-20240313-030543.png

19.2 Recommended Reflow Profile

19.2.1 Recommended Reflow Parameter Value

Parameter

Reference

Green Package

Average temperature gradient in preheating

Rpreheat

1-2 °C /sec

Soak time

tsoak

60-90 sec

Temperature gradient in soak/dryout

Rdryout

2-3 °C /sec

Time above Tmp (Melting Point), 217 °C

treflow

40-60 sec

Peak temperature in reflow

Tpeak

217 °C + 20 °C (min.) to 30 °C (max.)

Temperature gradient in cooling

Rcooling

2-4 °C /sec

Note:

  1. Sn/Ag/Cu are recommended for SMT application

  2. Max. temperature for IC in SMT's process: <= 260 °C , time: <= 10 sec

 19.2.2 Recommended Reflow Profile

image-20240325-154034.png

Note:

  1. Compliance with the EU RoHS Directive

  2. Material Recycling: Cu 30%

  • No labels