V2.0.0 of SNNF
This is the formal release V2.0.0 of SNNF(Sunplus Neural Network Framework).
Target of the V2.0.0
This version is based on SNNF1.2.0, which first implements the separation of Model-Zoo and adds some typical sample Python interfaces:
Split the current SNNF and restructure the entire system, with the bottom layer being model zoo (viewed as a common resource) and the upper layers being in the form of SNNF, mAP, etc; Make our architecture more in line with the principles of high cohesion and low coupling, and more flexible and user-friendly.
Add Python interfaces for SNNF user API.
Demo,single model, sequential flow and mAP test sample is ready now.
Please get the xxx_usage.txt and xxx_test.py for your test.
The rest SNNF and the separated model zoo will be recombined to achieve functionality equivalent to SNNF1.2.0. This goal will be achieved through the combination of SNNF2.0.1 and Model-Zoo1.0.1.
SNNF V2.0.0 Could be run with Model-Zoo V1.0.0 now.
Resource
Please get the V2.0.0 release resource here, tag:V2.0.0.
Usage of V2.0.0
How to verify Official Demos
You can use the script we provide to start as follows:
/SNNF/release # ./snnf_demo.sh
Usage: ./bin/snnf_demo [-m|-s|-a|-h] [-i|-v|-o|-p|option]
Version: 2.0.0_commit a6021c8e89b467f69f0a10e6cdac589fb8cafabb
Time: Date: Tue Apr 1 13:32:34 2025 +0800
[-m,--model <model>] run a single model
<model>:AgeU8 GenderAgeU8 HumanAttrHybridU8
HumanAttrI16 OcrClsI16 OcrDetI16
OcrRecI16 VehicleAttrI16 Yolo11sClassifyHybridI8
Yolo11sDetectionHybridI8 Yolo11sObbHybridI8 Yolo11sPoseHybridI8
Yolo11sSegmentationHybridI8 Yolov10sDetectionHybridI8 Yolov8nCcpdDetectionOptiU8
Yolov8sClassifyHybridI8 Yolov8sDetectionHybridI8 Yolov8sDetectionI16
Yolov8sPoseI16
example:./bin/snnf_demo -m Yolov8sDetectionI16
./bin/snnf_demo --model HumanAttrI16
[-s,--sequential <model1,model2,...>] run sequential models
<models>:Yolo11sDetectionHybridI8,HumanFilter,HumanAttrI16
OcrDetI16,OcrRecI16
OcrDetI16,OcrClsI16,OcrRecI16
Yolov8sDetectionHybridI8,VehicleFilter,VehicleAttrI16
Yolov10sDetectionHybridI8,BotSortTrack
example:./bin/snnf_demo -s Yolov5sDetection,HumanFilter,HumanAttr
./bin/snnf_demo --sequential OcrDetI16,OcrClsI16,OcrRecI16
./bin/snnf_demo -s YoloV8sDetectionOpti,BotSortTrack,videoWriter -v resource/video/humanTracking.mp4
[-i,--image file] set image file to nn detection.
<file>: file name
[-c | option]: test count, this parameter is only match with -i
example:./bin/snnf_demo -s Yolo11sDetectionHybridI8,HumanFilter,HumanAttrI16 -i resource/image/person.jpg -c 2
./bin/snnf_demo -s Yolo11sDetectionHybridI8,HumanFilter,HumanAttrI16 --image resource/image/person.jpg -c 2
[-v,--video file] set video file to nn detection.
<file>: file name
example:./bin/snnf_demo -s Yolo11sDetectionHybridI8,BotSortTrack -v resource/video/humanTracking.mp4
./bin/snnf_demo -s Yolo11sDetectionHybridI8,BotSortTrack --video resource/video/humanTracking.mp4
[-o,--output file] specify the output file name for saving results.
<file>: file name with extension (e.g., output.jpg, output.json, output.mp4)
example:./bin/snnf_demo -s Yolo11sDetectionHybridI8,HumanFilter,HumanAttrI16 -i resource/image/person.jpg -o output.jpg
./bin/snnf_demo -s Yolo11sDetectionHybridI8,HumanFilter,HumanAttrI16 -i resource/image/person.jpg -o output.json
./bin/snnf_demo -s Yolo11sDetectionHybridI8,BotSortTrack -v resource/video/humanTracking.mp4 -o output.mp4
[-a,--all] run all model testing
[-p,--performance] enable performance test
assist tools: BotSortTrack BotSortTrackStgcn HumanFilter VehicleFilter
Release folder structure
bin: Some prebuild application.
snnf_demo. Prebuild demo programs that can run on the c3v Linux platform. Just a demo showcasing the functionality of SNNF.
snnf_yolov8s_map. Prebuild sample for mAP test. Customers can follow the sample code here to improve similar features they want.
cmake:The cmake config both for build on C3V and cross compiling.
demo:The source code of snnf_demo. Include C++ and python mode.
include:header file of sunplus NN framework SDK.
lib:libraries of sunplus NN framework SDK.
model_config.mk:Model selection both for demo and sample.
python_res:The python interface related libs and resources.
resource
config: some config files for features.
font: ttf file for plotting sample.
image: image files used for test.
models: models to be used in the sample program, which are refer to Model-Zoo.
video: video files used for test.
samples:sample code for using sunplus NN framework, only yolov8s_map is verified and available now.
snnf_build_demo.sh:executable script for building demo code.
snnf_build_samples.sh: executable script for building sample code, only yolov8s_map will be built now.
snnf_demo.sh:executable script for running demo code.
snnf_env.sh: executable script for compiling environment.
thirdparty: just as its name implies.
How to run SNNF demo
Copy the release foler to C3V Linux.
/SNNF/release # ls -alh
total 512K
drwxr-xr-x 11 root root 32K Apr 2 2025 .
drwxr-xr-x 3 root root 32K Apr 1 02:26 ..
drwxr-xr-x 2 root root 32K Apr 2 2025 bin
drwxr-xr-x 2 root root 32K Apr 2 2025 cmake
drwxr-xr-x 4 root root 32K Apr 2 2025 demo
drwxr-xr-x 7 root root 32K Apr 2 2025 include
drwxr-xr-x 2 root root 32K Apr 2 2025 lib
-rwxr-xr-x 1 root root 708 Apr 2 2025 model_config.mk
drwxr-xr-x 4 root root 32K Apr 2 2025 python_res
drwxr-xr-x 7 root root 32K Apr 2 2025 resource
drwxr-xr-x 6 root root 32K Apr 2 2025 samples
-rwxr-xr-x 1 root root 907 Apr 2 2025 snnf_build_demo.sh
-rwxr-xr-x 1 root root 1.1K Apr 2 2025 snnf_build_samples.sh
-rwxr-xr-x 1 root root 493 Apr 2 2025 snnf_demo.sh
-rwxr-xr-x 1 root root 2.0K Apr 2 2025 snnf_env.sh
drwxr-xr-x 9 root root 32K Apr 2 2025 thirdparty
Run nnf_run.sh to run the SNNF demo.
a. One-time input
./snnf_demo.sh -m Yolo11sDetectionHybridI8
# ./snnf_demo.sh -m Yolo11sDetectionHybridI8
1743500227803|7f8fb99040|T|common: [app]Yolo11sDetectionHybridI8 in
1743500228525|7f78f35740|T|common: [nn]GeneralModelOutputListener detect from resource/image/person.jpg, the result: (box: 612.90 149.38 274.48 645.11) --> label: 0(person), confidence: 0.95, fin: false
1743500228525|7f78f35740|T|common: [nn]GeneralModelOutputListener detect from resource/image/person.jpg, the result: (box: 314.62 175.28 210.53 620.37) --> label: 0(person), confidence: 0.93, fin: false
1743500228525|7f78f35740|T|common: [nn]GeneralModelOutputListener detect from resource/image/person.jpg, the result: (box: 448.94 286.61 66.52 177.38) --> label: 26(handbag), confidence: 0.73, fin: true
1743500228541|7f8fb99040|T|common: [app]Yolo11sDetectionHybridI8 out, retVal: -0x0
b. Read input from the image file
./snnf_demo.sh -m Yolo11sDetectionHybridI8 -i resource/image/person640x640.jpg
# ./snnf_demo.sh -m Yolo11sDetectionHybridI8 -i resource/image/person640x640.jpg
1743500300752|7f97c49040|T|common: [app]Yolo11sDetectionHybridI8 in
1743500301037|7f80fe5740|T|common: [nn]GeneralModelOutputListener detect from resource/image/person640x640.jpg, the result: (box: 0.00 14.00 626.00 622.00) --> label: 0(person), confidence: 0.87, fin: true
1743500301052|7f97c49040|T|common: [app]Yolo11sDetectionHybridI8 out, retVal: -0x0
c. Read inputs from the video file.
./snnf_demo.sh -m Yolo11sDetectionHybridI8 -v resource/video/humanCount.mp4
# ./snnf_demo.sh -m Yolo11sDetectionHybridI8 -v resource/video/humanCount.mp4
1743501540427|7f96aa7040|T|common: [nn]Press: 'q' or 'Q' to quit the test
1743501540427|7f7d5f5740|T|common: [app]streaming test: runner func in
1743501540746|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 673.88 130.50 302.25 870.00) --> label: 0(person), confidence: 0.92, fin: false
1743501540746|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 47.81 364.88 221.62 464.25) --> label: 61(toilet), confidence: 0.36, fin: false
1743501540746|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 48.19 364.50 220.12 465.00) --> label: 72(refrigerator), confidence: 0.30, fin: true
1743501540843|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 674.25 128.25 310.50 871.50) --> label: 0(person), confidence: 0.92, fin: false
1743501540845|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 47.81 364.50 221.81 463.50) --> label: 61(toilet), confidence: 0.40, fin: false
1743501540846|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 49.12 364.12 219.38 462.75) --> label: 72(refrigerator), confidence: 0.31, fin: true
1743501540939|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 676.50 126.00 309.00 874.50) --> label: 0(person), confidence: 0.93, fin: false
1743501540939|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 48.75 364.50 220.69 466.50) --> label: 61(toilet), confidence: 0.43, fin: false
1743501540940|7f7de05740|T|common: [nn]GeneralModelOutputListener detect from , the result: (box: 48.75 364.50 220.69 466.50) --> label: 72(refrigerator), confidence: 0.31, fin: true
......
1737541664021|7f97f66040|T|common: [app]q to quit
q
1737541665502|7f97f66040|T|common: [app]The input file: resource/video/humanCount.mp4 has 516 frames
1737541665502|7f97f66040|T|common: [app]streaming out, retVal: -0x0
d. Sequential models
./snnf_demo.sh -s Yolo11sDetectionHybridI8,HumanFilter,HumanAttrI16
# ./snnf_demo.sh -s Yolo11sDetectionHybridI8,HumanFilter,HumanAttrI16
1743501764050|7f905e7040|T|common: [app]sequential in
1743501764320|7f905e7040|T|common: [app]input image name: resource/image/person.jpg
1743501764462|7f75f51740|T|common: [nn]human attr(box: 612.90 149.38 274.48 645.11) --> result:
age: 18-60
bag: No bag
direction: Front
gender: Male
glasses: True
hat: False
holdObjectsInFront: False
lower: Trousers
shose: No boots
upper: ShortSleeve UpperStride
1743501764465|7f75f51740|T|common: [nn]human attr(box: 314.62 175.28 210.53 620.37) --> result:
age: 18-60
bag: ShoulderBag
direction: Back
gender: Female
glasses: False
hat: False
holdObjectsInFront: False
lower: LowerPattern Shorts
shose: No boots
upper: ShortSleeve
1743501764472|7f905e7040|T|common: [app]sequential out, retVal: -0x0
e. Model inference results save to image.
./snnf_demo.sh -m Yolo11sPoseHybridI8 -o pose_detected_output.jpg
# ./snnf_demo.sh -m Yolo11sPoseHybridI8 -o pose_detected_output.jpg
1743501884763|7fad719040|T|common: [app]Yolo11sPoseHybridI8 in
1743501885651|7fad719040|T|common: [app]Yolo11sPoseHybridI8 out, retVal: -0x0
f. Model inference results save to json file.
./snnf_demo.sh -m Yolo11sPoseHybridI8 -o yolo11sPoseResults.json
# ./snnf_demo.sh -m Yolo11sPoseHybridI8 -o yolo11sPoseResults.json
1743502112289|7face59040|T|common: [app]Yolo11sPoseHybridI8 in
1743502112563|7face59040|T|common: [app]Yolo11sPoseHybridI8 out, retVal: -0x0
How to build SNNF
Cross-compile for C3V environment.
Please use
snnf_config.sh
firstly for SNNF config according to Model-Zoo's model information.Please use
snnf_build.sh
for SNNF compiling.All the resources will be installed to the release folder.
Copy the release folder to the C3V platform.
Setup environment variable.
a. Setting environment variables independently with command source snnf_env.sh
.
#!/bin/sh
export LD_LIBRARY_PATH=${PWD}/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${PWD}/thirdparty/libpng/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${PWD}/thirdparty/pytorch/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${PWD}/thirdparty/freetype/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${PWD}/thirdparty/opencv4/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${PWD}/thirdparty/ffmpeg/lib:${LD_LIBRARY_PATH}
b. Run snnf_demo.sh
will auto set environment variables.
Then, you can run snnf_run.sh for SNNF demo.
If you have any modification of demo code in the release folder, you can use
snnf_build_demo.sh
to build the modified demo code.If you have any modification of samples code in the release folder, you can use
snnf_build_samples.sh
to build the modified samples code.
SNNF Sample introduction
Please refer to 《Models' Guide》.
User API
Please refer to API DOC v2.0 .